scholarly journals Soil Biology in the Ecuadorian Amazon

Author(s):  
Thony Huera-Lucero

For many decades the Ecuadorian Amazon has been used as source of resources for cities both at national and international level. These facts had important consequences and environmental impacts, affecting from the smallest living organisms of the soil to the indigenous communities and peoples that inhabit the Amazon rainforest, as well as the flora and fauna biodiversity. With the change in land use, the Amazonian territory has been progressively affected and it is gradually decreasing, leaving behind poor soils.  Production conditions result modified by the implementation of large monocultures and livestock systems, a situation that directly affects soil and soil fauna. For this reason, we considered interesting to study, understand and compare the behavior of building organisms in natural and intervened areas, through sampling, inventories and laboratory analysis with the aim of developing and implementing production systems (chakras, agroforestry or silvopastoral systems), which benefit both the small producer and the ecosystem and life that inhabits it. Since there are no easily available compiled papers regarding the "Soil Biology in the Ecuadorian Amazon" in this work we collect information that allows us to offer a framework on the topics of changes in land use, typology of Amazonian soils and its main inhabitats organisms. All these date let to be considered as evidences of the degree of the health/disturbance of the corresponding soils.

2015 ◽  
Vol 37 (5) ◽  
pp. 497 ◽  
Author(s):  
Sofia Marinaro ◽  
Ricardo H. Grau

Increasing global food demand requires the exploration of agricultural production systems that minimise the conflict between food production and biodiversity conservation. Cattle ranching is a main land-use in tropical and sub-tropical South American semi-arid ecosystems, such as the Chaco eco-region of sub-tropical Argentina, one of the most active frontiers of land-use change. Despite open habits being a key component of the Chaco landscape, conservation studies and policies have focussed on forests. In this study, bird and mammal communities of three different open-canopy livestock-producing systems in the semi-arid Argentinian Chaco: natural grasslands, sown non-native pastures and silvopastoral systems are discussed. Diversity (Inverse Simpson index) and species composition (multivariate ordinations) were measured and species identified that characterise each system (indicator species). The three livestock systems did not significantly differ in terms of diversity but showed differences in the composition of bird communities. Natural grasslands had the highest number of bird and mammal indicator species (including Myrmecophaga tridactyla, a high conservation-value species). These results highlight natural grasslands as a landscape unit with a high conservation value and indicate that they should be explicitly targeted by conservation and land-use policies, particularly because they represent a small and rapidly decreasing proportion of the semi-arid Argentinian Chaco.


2020 ◽  
Vol 12 (20) ◽  
pp. 8656
Author(s):  
Daniela Figueroa ◽  
Patricia Ortega-Fernández ◽  
Thalita F. Abbruzzini ◽  
Anaitzi Rivero-Villlar ◽  
Francisco Galindo ◽  
...  

The effects of converting native forests to livestock systems on soil C, N and P contents across various climatic zones are not well understood for the tropical region. The goal of this study was to test how soil C, N and P dynamics are affected by the land-use change from natural forests to livestock production systems (extensive pasture and intensive silvopastoral systems) across a rainfall gradient of 1611–711 mm per year in the Mexican tropics. A total of 15 soil-based biogeochemical metrics were measured in samples collected during the dry and rainy seasons in livestock systems and mature forests for land-use and intersite comparisons of the nutrient status. Our results show that land-use change from natural forests to livestock production systems had a negative effect on soil C, N and P contents. In general, soil basal respiration and C-acquiring enzyme activities increased under livestock production systems. Additionally, reduction in mean annual rainfall affected moisture-sensitive biogeochemical processes affecting the C, N and P dynamics. Our findings imply that land-use changes alter soil C, N and P dynamics and contents, with potential negative consequences for the sustainability of livestock production systems in the tropical regions of Mexico investigated.


IJOHMN ◽  
2019 ◽  
Vol 5 (3) ◽  
pp. 22-52
Author(s):  
Jalal Uddin Khan

Overlapping and interconnected, interdisciplinary and heterogeneous, amorphous and multi-layered, and deep and broad as it is, countless topics on ecoliterature make ecocriticism a comprehensive catchall term that proposes to look at a text--be it social, cultural, political, religious, or scientific--from naturalist perspectives and moves us from “the community of literature to the larger biospheric community which […] we belong to even as we are destroying it” (William Rueckert). As I was in the middle of writing and researching for this article, I was struck by a piece of nature writing by an eleven year old sixth grader born to his (South Asian and American) mixed parents, both affiliated with Johns Hopkins and already proud to belong to the extended family of a Nobel Laureate in Physics. The young boy, Rizwan Thorne-Lyman, wrote, as his science story project, an incredibly beautiful essay, “A Day in the Life of the Amazon Rainforest.” Reading about the rainforest was one of his interests, I was told. In describing the day-long activities of birds and animals among the tall trees and small plants, the 2 pp.-long narrative actually captures the eternally continuing natural cycle of the Amazon. The budding naturalist’s neat classification of the wild life into producers (leafy fruit and flowering plants and trees), consumers (caimans/crocodiles, leafcutter ants, capuchin monkey), predators (macaws, harpy eagles, jaguars, green anaconda), decomposers (worms, fungi and bacteria), parasites (phorid flies) and scavengers (millipedes) was found to be unforgettably impressive. Also the organization of the essay into the Amazon’s mutually benefitting and organically functioning flora and fauna during the day--sunrise, midday, and sunset--was unmistakably striking. I congratulated him as an aspiring environmentalist specializing in rain forest. I encouraged him that he should try to get his essay published in a popular magazine like Reader’s Digest (published did he get in no time indeed![i]) and that he should also read about (and visit) Borneo in Southeast Asia, home to other great biodiverse rainforests of the world. I called him “soft names” as a future Greenpeace and Environmental Protection leader and theorist, a soon-to-be close friend of Al Gore’s. The promising boy’s understanding, however short, of the Amazon ecology and ecosystem and the biological phenomena of its living organisms was really amazing. His essay reminded me of other famous nature writings, especially those by Fiona Macleod (see below), that are the pleasure of those interested in the ecocriticism of the literature of place--dooryards, backyards, outdoors, open fields, parks and farms, fields and pastures, and different kinds of other wildernesses.   [i] https://stonesoup.com/post/a-day-in-the-life-in-the-amazon-rainforest/


Insects ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 269 ◽  
Author(s):  
Andrew Kalyebi ◽  
Sarina Macfadyen ◽  
Andrew Hulthen ◽  
Patrick Ocitti ◽  
Frances Jacomb ◽  
...  

Cassava (Manihot esculenta Crantz), an important commercial and food security crop in East and Central Africa, continues to be adversely affected by the whitefly Bemisia tabaci. In Uganda, changes in smallholder farming landscapes due to crop rotations can impact pest populations but how these changes affect pest outbreak risk is unknown. We investigated how seasonal changes in land-use have affected B. tabaci population dynamics and its parasitoids. We used a large-scale field experiment to standardize the focal field in terms of cassava age and cultivar, then measured how Bemisia populations responded to surrounding land-use change. Bemisia tabaci Sub-Saharan Africa 1 (SSA1) was identified using molecular diagnostics as the most prevalent species and the same species was also found on surrounding soybean, groundnut, and sesame crops. We found that an increase in the area of cassava in the 3–7-month age range in the landscape resulted in an increase in the abundance of the B. tabaci SSA1 on cassava. There was a negative relationship between the extent of non-crop vegetation in the landscape and parasitism of nymphs suggesting that these parasitoids do not rely on resources in the non-crop patches. The highest abundance of B. tabaci SSA1 nymphs in cassava fields occurred at times when landscapes had large areas of weeds, low to moderate areas of maize, and low areas of banana. Our results can guide the development of land-use strategies that smallholder farmers can employ to manage these pests.


2006 ◽  
Vol 34 (10) ◽  
pp. 1831-1849 ◽  
Author(s):  
Carlos F. Mena ◽  
Alisson F. Barbieri ◽  
Stephen J. Walsh ◽  
Christine M. Erlien ◽  
Flora L. Holt ◽  
...  

2015 ◽  
Vol 21 (5) ◽  
pp. 747-758 ◽  
Author(s):  
Hannah H. E. van Zanten ◽  
Herman Mollenhorst ◽  
Cindy W. Klootwijk ◽  
Corina E. van Middelaar ◽  
Imke J. M. de Boer

Land ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1340
Author(s):  
Elena Lazos-Chavero ◽  
Paula Meli ◽  
Consuelo Bonfil

Despite the economic and social costs of national and international efforts to restore millions of hectares of deforested and degraded landscapes, results have not met expectations due to land tenure conflicts, land-use transformation, and top-down decision-making policies. Privatization of land, expansion of cattle raising, plantations, and urbanization have created an increasingly competitive land market, dispossessing local communities and threatening forest conservation and regeneration. In contrast to significant investments in reforestation, natural regrowth, which could contribute to landscape regeneration, has not been sufficiently promoted by national governments. This study analyzes socio-ecological and economic vulnerabilities of indigenous and other peasant communities in the Mexican states of Veracruz, Chiapas, and Morelos related to the inclusion of natural regeneration in their forest cycles. While these communities are located within protected areas (Los Tuxtlas Biosphere Reserve, Montes Azules Biosphere Reserve, El Tepozteco National Park, and Chichinautzin Biological Corridor), various threats and vulnerabilities impede natural regeneration. Although landscape restoration involves complex political, economic, and social relationships and decisions by a variety of stakeholders, we focus on communities’ vulnerable land rights and the impacts of privatization on changes in land use and forest conservation. We conclude that the social, economic, political, and environmental vulnerabilities of the study communities threaten natural regeneration, and we explore necessary changes for incorporating this process in landscape restoration.


2009 ◽  
Vol 44 (8) ◽  
pp. 1011-1020 ◽  
Author(s):  
Robélio Leandro Marchão ◽  
Patrick Lavelle ◽  
Leonide Celini ◽  
Luiz Carlos Balbino ◽  
Lourival Vilela ◽  
...  

The objective of this work was to assess the effects of integrated crop-livestock systems, associated with two tillage and two fertilization regimes, on the abundance and diversity of the soil macrofauna. Four different management systems were studied: continuous pasture (mixed grass); continuous crop; two crop-livestock rotations (crop/pasture and pasture/crop); and native Cerrado as a control. Macrofauna was sampled using a modified Tropical Soil Biology and Fertility method, and all individuals were counted and identified at the morphospecies level for each plot. A total of 194 morphospecies were found, distributed among 30 groups, and the most representative in decreasing order of density were: Isoptera, Coleoptera larvae, Formicidae, Oligochaeta, Coleoptera adult, Diplopoda, Hemiptera, Diptera larvae, Arachnida, Chilopoda, Lepidoptera, Gasteropoda, Blattodea and Orthoptera. Soil management systems and tillage regimes affected the structure of soil macrofauna, and integrated crop-livestock systems, associated with no-tillage, especially with grass/legume species associations, had more favorable conditions for the development of "soil engineers" compared with continuous pasture or arable crops. Soil macrofauna density and diversity, assessed at morphospecies level, are effective data to measure the impact of land use in Cerrado soils.


2016 ◽  
Vol 7 (2) ◽  
pp. 208-214
Author(s):  
P. Chemineau

The future livestock systems at the world level will have to produce more in the perspective of the population increase in the next 30 years, whereas reducing their environmental footprint and addressing societal concerns. In that perspective, we may wonder if animal health and animal welfare, which are two essential components of production systems, may play an important role in the stability of the three pillars of sustainability of the livestock systems. We already know that objectives driven by economy, environment and society may modify animal welfare and animal health, but is the reverse true? The answer is yes and in 11 cases out of 12 of the matrix health-welfare×3 pillars of sustainability×positive or negative change, we have many examples indicating that animal health and animal welfare are able to modify, positively or negatively, the three pillars of sustainability. Moreover, we also have good examples of strong interactions between health and welfare. These elements play in favour of an holistic approach at the farm level and of a multicriterial definition of what could be the sustainable systems of animal production in the future which will respect animal welfare and maintain a good animal health.


2016 ◽  
Vol 56 (7) ◽  
pp. 1070 ◽  
Author(s):  
S. G. Wiedemann ◽  
M.-J. Yan ◽  
C. M. Murphy

This study conducted a life cycle assessment (LCA) investigating energy, land occupation, greenhouse gas (GHG) emissions, fresh water consumption and stress-weighted water use from production of export lamb in the major production regions of New South Wales, Victoria and South Australia. The study used data from regional datasets and case study farms, and applied new methods for assessing water use using detailed farm water balances and water stress weighting. Land occupation was assessed with reference to the proportion of arable and non-arable land and allocation of liveweight (LW) and greasy wool was handled using a protein mass method. Fossil fuel energy demand ranged from 2.5 to 7.0 MJ/kg LW, fresh water consumption from 58.1 to 238.9 L/kg LW, stress-weighted water use from 2.9 to 137.8 L H2O-e/kg LW and crop land occupation from 0.2 to 2.0 m2/kg LW. Fossil fuel energy demand was dominated by on-farm energy demand, and differed between regions and datasets in response to production intensity and the use of purchased inputs such as fertiliser. Regional fresh water consumption was dominated by irrigation water use and losses from farm water supply, with smaller contributions from livestock drinking water. GHG emissions ranged from 6.1 to 7.3 kg CO2-e/kg LW and additional removals or emissions from land use (due to cultivation and fertilisation) and direct land-use change (due to deforestation over previous 20 years) were found to be modest, contributing between –1.6 and 0.3 kg CO2-e/kg LW for different scenarios assessing soil carbon flux. Excluding land use and direct land-use change, enteric CH4 contributed 83–89% of emissions, suggesting that emissions intensity can be reduced by focussing on flock production efficiency. Resource use and emissions were similar for export lamb production in the major production states of Australia, and GHG emissions were similar to other major global lamb producers. The results show impacts from lamb production on competitive resources to be low, as lamb production systems predominantly utilised non-arable land unsuited to alternative food production systems that rely on crop production, and water from regions with low water stress.


Sign in / Sign up

Export Citation Format

Share Document