scholarly journals Within-Season Changes in Land-Use Impact Pest Abundance in Smallholder African Cassava Production Systems

Insects ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 269 ◽  
Author(s):  
Andrew Kalyebi ◽  
Sarina Macfadyen ◽  
Andrew Hulthen ◽  
Patrick Ocitti ◽  
Frances Jacomb ◽  
...  

Cassava (Manihot esculenta Crantz), an important commercial and food security crop in East and Central Africa, continues to be adversely affected by the whitefly Bemisia tabaci. In Uganda, changes in smallholder farming landscapes due to crop rotations can impact pest populations but how these changes affect pest outbreak risk is unknown. We investigated how seasonal changes in land-use have affected B. tabaci population dynamics and its parasitoids. We used a large-scale field experiment to standardize the focal field in terms of cassava age and cultivar, then measured how Bemisia populations responded to surrounding land-use change. Bemisia tabaci Sub-Saharan Africa 1 (SSA1) was identified using molecular diagnostics as the most prevalent species and the same species was also found on surrounding soybean, groundnut, and sesame crops. We found that an increase in the area of cassava in the 3–7-month age range in the landscape resulted in an increase in the abundance of the B. tabaci SSA1 on cassava. There was a negative relationship between the extent of non-crop vegetation in the landscape and parasitism of nymphs suggesting that these parasitoids do not rely on resources in the non-crop patches. The highest abundance of B. tabaci SSA1 nymphs in cassava fields occurred at times when landscapes had large areas of weeds, low to moderate areas of maize, and low areas of banana. Our results can guide the development of land-use strategies that smallholder farmers can employ to manage these pests.

2021 ◽  
Vol 13 (3) ◽  
pp. 1158
Author(s):  
Cecilia M. Onyango ◽  
Justine M. Nyaga ◽  
Johanna Wetterlind ◽  
Mats Söderström ◽  
Kristin Piikki

Opportunities exist for adoption of precision agriculture technologies in all parts of the world. The form of precision agriculture may vary from region to region depending on technologies available, knowledge levels and mindsets. The current review examined research articles in the English language on precision agriculture practices for increased productivity among smallholder farmers in Sub-Saharan Africa. A total of 7715 articles were retrieved and after screening 128 were reviewed. The results indicate that a number of precision agriculture technologies have been tested under SSA conditions and show promising results. The most promising precision agriculture technologies identified were the use of soil and plant sensors for nutrient and water management, as well as use of satellite imagery, GIS and crop-soil simulation models for site-specific management. These technologies have been shown to be crucial in attainment of appropriate management strategies in terms of efficiency and effectiveness of resource use in SSA. These technologies are important in supporting sustainable agricultural development. Most of these technologies are, however, at the experimental stage, with only South Africa having applied them mainly in large-scale commercial farms. It is concluded that increased precision in input and management practices among SSA smallholder farmers can significantly improve productivity even without extra use of inputs.


Author(s):  
Jane J. Aggrey ◽  
Mirjam A. F. Ros-Tonen ◽  
Kwabena O. Asubonteng

AbstractArtisanal and small-scale mining (ASM) in sub-Saharan Africa creates considerable dynamics in rural landscapes. Many studies addressed the adverse effects of mining, but few studies use participatory spatial tools to assess the effects on land use. Hence, this paper takes an actor perspective to analyze how communities in a mixed farming-mining area in Ghana’s Eastern Region perceive the spatial dynamics of ASM and its effects on land for farming and food production from past (1986) to present (2018) and toward the future (2035). Participatory maps show how participants visualize the transformation of food-crop areas into small- and large-scale mining, tree crops, and settlement in all the communities between 1986 and 2018 and foresee these trends to continue in the future (2035). Participants also observe how a mosaic landscape shifts toward a segregated landscape, with simultaneous fragmentation of their farming land due to ASM. Further segregation is expected in the future, with attribution to the expansion of settlements being an unexpected outcome. Although participants expect adverse effects on the future availability of food-crop land, no firm conclusions can be drawn about the anticipated effect on food availability. The paper argues that, if responsibly applied and used to reveal community perspectives and concerns about landscape dynamics, participatory mapping can help raise awareness of the need for collective action and contribute to more inclusive landscape governance. These findings contribute to debates on the operationalization of integrated and inclusive landscape approaches and governance, particularly in areas with pervasive impacts of ASM.


2021 ◽  
Vol 10 (6) ◽  
pp. 48
Author(s):  
David Mhlanga

The study intended to investigate the factors that are important in influencing the financial inclusion of smallholder farming households in Sub-Saharan Africa with a specific focus on Zimbabwe. Motivated by the fact that there is an increase in the evidence of the importance of financial inclusion in fighting poverty and the fact that by merely having a bank account, financial inclusion cannot be guaranteed, the study went further to interrogate factors that influence smallholder farmers to have a transaction account, to borrow and to have insurance. Since the dependent variable of financial inclusion had more than two categories, with three unordered categories, transaction account, savings/credit account, and insurance, the multinomial logistic regression was used to estimate the determinants of financial inclusion from these three categories of the dependent variable. The multinomial logit model results, with insurance as the reference category, indicated that the size of the household, transaction costs, gender and agricultural extension service were the factors influencing the demand for a household to open a transaction account. On the other hand, off-farm income and age of the household were the only two factors significantly influencing households to borrow. Therefore, it is imperative for, the government of Zimbabwe to come up with more policies that encourage farmers to participate in the formal financial market as financial inclusion can help to fight poverty and the general developments of societies.   Received: 28 April 2021 / Accepted: 31 August 2021 / Published: 5 November 2021


Plant Disease ◽  
1999 ◽  
Vol 83 (4) ◽  
pp. 398-398 ◽  
Author(s):  
F. O. Ogbe ◽  
G. I. Atiri ◽  
D. Robinson ◽  
S. Winter ◽  
A. G. O. Dixon ◽  
...  

Cassava (Manihot esculenta Crantz) is an important food crop in sub-Saharan Africa. One of the major production constraints is cassava mosaic disease caused by African cassava mosaic (ACMV) and East African cassava mosaic (EACMV) begomoviruses. ACMV is widespread in its distribution, occurring throughout West and Central Africa and in some eastern and southern African countries. In contrast, EACMV has been reported to occur mainly in more easterly areas, particularly in coastal Kenya and Tanzania, Malawi, and Madagascar. In 1997, a survey was conducted in Nigeria to determine the distribution of ACMV and its strains. Samples from 225 cassava plants showing mosaic symptoms were tested with ACMV monoclonal antibodies (MAbs) in triple antibody sandwich enzyme-linked immunosorbent assay (1). Three samples reacted strongly with MAbs that could detect both ACMV and EACMV. One of them did not react with ACMV-specific MAbs while the other two reacted weakly with such MAbs. With polymerase chain reaction (2), the presence of EACMV and a mixture of EACMV and ACMV in the respective samples was confirmed. These samples were collected from two villages: Ogbena in Kwara State and Akamkpa in Cross River State. Co-infection of some cassava varieties with ACMV and EACMV leads to severe symptoms. More importantly, a strain of mosaic geminivirus known as Uganda variant arose from recombination between the two viruses (2). This report provides evidence for the presence of EACMV in West Africa. References: (1) J. E. Thomas et al. J. Gen. Virol. 67:2739, 1986. (2) X. Zhou et al. J. Gen. Virol. 78:2101, 1997.


2016 ◽  
Vol 55 (S1) ◽  
pp. 125-144 ◽  
Author(s):  
REBECCA NELSON ◽  
RICHARD COE ◽  
BETTINA I. G. HAUSSMANN

SUMMARYThe agricultural research and development institutions in most developing countries are poorly equipped to support the needs of millions of smallholder farmers that depend upon them. The research approaches taken by these systems explicitly or implicitly seek simple, one-size-fits-all solutions for problems and opportunities that are extremely diverse. Radical change is needed to facilitate the agroecological intensification of smallholder farming. We propose that large-scale participatory approaches, combined with innovations in information and communications technology (ICT), could enable the effective matching of diverse options to the wide spectrum of socio-ecological context that characterize smallholder agriculture. We consider the requirements, precedents and issues that might be involved in the development of farmer research networks (FRNs). Substantial institutional innovation will be needed to support FRNs, with shifts in roles and relationships amongst researchers, extension providers and farmers. Where farmers’ organizations have social capital and strong facilitation skills, such alignments may be most feasible. Novel information management capabilities will be required to introduce options and principles, enable characterization of contexts, manage data related to option-by-context interactions and enable farmers to visualize their findings in useful and intelligible ways. FRNs could lead to vastly greater capacity for technical innovation, which could in turn enable greater productivity and resilience, and enhance the quality of rural life.


2022 ◽  
Vol 5 ◽  
Author(s):  
Wytze Marinus ◽  
Eva S. Thuijsman ◽  
Mark T. van Wijk ◽  
Katrien Descheemaeker ◽  
Gerrie W. J. van de Ven ◽  
...  

Smallholder farming in sub-Saharan Africa keeps many rural households trapped in a cycle of poor productivity and low incomes. Two options to reach a decent income include intensification of production and expansion of farm areas per household. In this study, we explore what is a “viable farm size,” i.e., the farm area that is required to attain a “living income,” which sustains a nutritious diet, housing, education and health care. We used survey data from three contrasting sites in the East African highlands—Nyando (Kenya), Rakai (Uganda), and Lushoto (Tanzania) to explore viable farm sizes in six scenarios. Starting from the baseline cropping system, we built scenarios by incrementally including intensified and re-configured cropping systems, income from livestock and off-farm sources. In the most conservative scenario (baseline cropping patterns and yields, minus basic input costs), viable farm areas were 3.6, 2.4, and 2.1 ha, for Nyando, Rakai, and Lushoto, respectively—whereas current median farm areas were just 0.8, 1.8, and 0.8 ha. Given the skewed distribution of current farm areas, only few of the households in the study sites (0, 27, and 4% for Nyando, Rakai, and Lushoto, respectively) were able to attain a living income. Raising baseline yields to 50% of the water-limited yields strongly reduced the land area needed to achieve a viable farm size, and thereby enabled 92% of the households in Rakai and 70% of the households in Lushoto to attain a living income on their existing farm areas. By contrast, intensification of crop production alone was insufficient in Nyando, although including income from livestock enabled the majority of households (73%) to attain a living income with current farm areas. These scenarios show that increasing farm area and/or intensifying production is required for smallholder farmers to attain a living income from farming. Obviously such changes would require considerable capital and labor investment, as well as land reform and alternative off-farm employment options for those who exit farming.


2021 ◽  
Author(s):  
Oskar Englund ◽  
Pål Börjesson ◽  
Blas Mola-Yudego ◽  
Göran Berndes ◽  
Ioannis Dimitriou ◽  
...  

Abstract The land sector needs to increase biomass production to meet multiple demands while reducing negative land use impacts and transitioning from being a source to being a sink of carbon. The new Common Agricultural Policy of the EU (CAP) steers towards a more needs-based, targeted approach to addressing multiple environmental and climatic objectives, in coherence with other EU policies. In relation to this, new schemes are developed to offer farmers direct payments to adapt practices beneficial for climate, water, soil, air and biodiversity. Multifunctional biomass production systems have potential to reduce environmental impacts from agriculture while maintaining or increasing biomass production for the bioeconomy across Europe. Here, we present the first attempt to model the deployment of two such systems, riparian buffers and windbreaks, across >81.000 landscapes in Europe (EU27 + UK), aiming to quantify the resulting ecosystem services and environmental benefits, considering three deployment scenarios with different incentives for implementation. We found that these multifunctional biomass production systems can reduce N emissions to water and soil loss by wind erosion, respectively, down to a “low” impact level all over Europe, while simultaneously providing substantial environmental co-benefits, using less than 1% of the area under annual crops in the EU. The GHG emissions savings of utilizing the biomass produced in these systems for replacing fossil alternatives, combined with the increases in soil organic carbon, correspond to 1-1,4% of total GHG emissions in EU28. The introduction of “eco-schemes” in the new CAP may resolve some of the main barriers to implementation of large-scale multifunctional biomass production systems. Increasing the knowledge of these opportunities among all EU member states, before designing and introducing country-specific Eco-scheme options in the new CAP, is critical.


2021 ◽  
Author(s):  
Manoj Kaushal ◽  
Yao Kolombia ◽  
Amos Emitati Alakonya ◽  
Apollin Fotso Kuate ◽  
Alejandro Ortega-Beltran ◽  
...  

AbstractPlantain (Musa spp.) is a staple food crop and an important source of income for millions of smallholder farmers in sub-Saharan Africa (SSA). However, there is a paucity of knowledge on soil microbial diversity in agroecologies where plantains are grown. Microbial diversity that increases plant performance with multi-trophic interactions involving resiliency to environmental constraints is greatly needed. For this purpose, the bacterial and fungal communities of plantain fields in high rainfall forests (HR) and derived savannas (SV) were studied using Illumina MiSeq for 16S rDNA and ITS amplicon deep sequencing. Microbial richness (α- and β-diversity), operational taxonomic units, and Simpson and Shannon–Wiener indexes (observed species (Sobs), Chao, ACE; P < 0.05) suggested that there were significant differences between HR and SV agroecologies among the most abundant bacterial communities, and some specific dynamic response observed from fungal communities. Proteobacteria formed the predominant bacterial phylum (43.7%) succeeded by Firmicutes (24.7%), and Bacteroidetes (17.6%). Ascomycota, Basidiomycota, and Zygomycota were the three most dominant fungal phyla in both agroecologies. The results also revealed an immense array of beneficial microbes in the roots and rhizosphere of plantain, including Acinetobacter, Bacillus, and Pseudomonas spp. COG and KEGG Orthology database depicted significant variations in the functional attributes of microbes found in the rhizosphere to roots. This result indicates that the different agroecologies and host habitats differentially support the dynamic microbial profile and that helps in altering the structure in the rhizosphere zone for the sake of promoting synergistic host-microbe interactions particularly under resource-poor conditions of SSA.


2021 ◽  
Vol 41 (1) ◽  
Author(s):  
Martina Occelli ◽  
Alberto Mantino ◽  
Giorgio Ragaglini ◽  
Matteo Dell’Acqua ◽  
Carlo Fadda ◽  
...  

AbstractSoil fertility is key to sustainable intensification of agriculture and food security in sub-Saharan Africa. However, when soil nutrients are not adequately managed, smallholder farming practices slowly erode soils to almost inert systems. This case study contributes to the understanding of such failures in marginal areas. We integrate agronomic and social sciences approaches to explore links between smallholder households’ farming knowledge and soil fertility in an ethnopedological perspective. We interview 280 smallholder households in two areas of the Ethiopian highlands, while collecting measures of 11 soil parameters at their main field. By analyzing soil compositions at tested households, we identify a novel measure of soil management ability, which provides an effective empirical characterization of the soil managing capacity of a household. Regression analysis is used to evaluate the effects of household knowledge on the soil management ability derived from laboratory analysis. Results highlight the complexity of knowledge transmission in low-input remote areas. We are able to disentangle a home learning and a social learning dimension of the household knowledge and appraise how they can result in virtuous and vicious cycles of soil management ability. We show that higher soil management ability is associated with farmers relying to a great extent on farming knowledge acquired within the household, as a result of practices slowly elaborated over the years. Conversely, lower soil management ability is linked to households valuing substantially farming knowledge acquired through neighbors and social gatherings. The present study is the first to formulate the concept of soil management ability and to investigate the effects of the presence and the types of farming knowledge on the soil management ability of smallholder farmers in remote areas. We show that farming knowledge has a primary role on soil fertility and we advise its consideration in agricultural development policies.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Darren J. Kriticos ◽  
Ross E. Darnell ◽  
Tania Yonow ◽  
Noboru Ota ◽  
Robert W. Sutherst ◽  
...  

AbstractProjected climate changes are thought to promote emerging infectious diseases, though to date, evidence linking climate changes and such diseases in plants has not been available. Cassava is perhaps the most important crop in Africa for smallholder farmers. Since the late 1990’s there have been reports from East and Central Africa of pandemics of begomoviruses in cassava linked to high abundances of whitefly species within the Bemisia tabaci complex. We used CLIMEX, a process-oriented climatic niche model, to explore if this pandemic was linked to recent historical climatic changes. The climatic niche model was corroborated with independent observed field abundance of B. tabaci in Uganda over a 13-year time-series, and with the probability of occurrence of B. tabaci over 2 years across the African study area. Throughout a 39-year climate time-series spanning the period during which the pandemics emerged, the modelled climatic conditions for B. tabaci improved significantly in the areas where the pandemics had been reported and were constant or decreased elsewhere. This is the first reported case where observed historical climate changes have been attributed to the increase in abundance of an insect pest, contributing to a crop disease pandemic.


Sign in / Sign up

Export Citation Format

Share Document