scholarly journals Foliar application of selenium (Se) at heading stage induces regulation of photosynthesis, yield formation, and quality characteristics in fragrant rice

2019 ◽  
Vol 57 (4) ◽  
pp. 1007-1014 ◽  
Author(s):  
H.W. LUO ◽  
L.X. HE ◽  
B. DU ◽  
Z.M. WANG ◽  
A.X. ZHENG ◽  
...  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Haowen Luo ◽  
Bin Du ◽  
Longxin He ◽  
Axiang Zheng ◽  
Shenggang Pan ◽  
...  

Abstract Background Selenium (Se) is a beneficial element for higher plants and essential for mammals. To study the effect of the foliar application of sodium selenate on fragrant rice performance, a pot experiment was conducted in Guangdong, China. At the initial heading stage, one-time foliar application of sodium selenate with concentrations of 0, 10, 20, 30, 40 and 50 μmol·L− 1 (named CK, Se1, Se2, Se3, Se4 and Se5, respectively) were foliar applied on two fragrant rice varieties, ‘Meixiangzhan-2’ and ‘Xiangyaxiangzhan’. Results Selenate application at the initial heading stage not only improved the grain yield of fragrant rice by increasing the seed-setting rate and grain weight, but also promoted the grain quality by increasing crude protein contents and lowering the chalky rice rate. Furthermore, Se applications enhanced the biosynthesis of 2-acetyl-1- pyrroline (2-AP), the main aromatic compound, by increasing the contents of precursors (△1- pyrroline, proline and pyrroline-5-carboxylic acid (P5C)) and the activities of enzymes (proline dehydrogenase (PRODH), △1-pyrroline-5-carboxylic acid synthetase (P5CS), and ornithine aminotransferase (OAT)) in fragrant rice. The results also showed that foliar application of sodium selenate enhanced the antioxidant system of both varieties by promoting the activities of peroxidase (POD), superoxide dismutase (SOD), catalase (CAT) and reducing the contents of malondialdehyde (MDA). Furthermore, the real-time PCR analyses depicted that foliar application of selenate up-regulated the GPX1, GPX4 and CATC transcripts. The higher antioxidative enzymatic activities might strength the stress resistant to ensure the stability of yield in fragrant rice form abiotic stress. Conclusions Foliar applications of sodium selenate at the initial heading stage increased the grain 2-AP content by enhancing the biosynthesis-related enzymes and precursors. The grain yield and quality of fragrant rice also increased due to selenate application. Furthermore, foliar application of selenate promoted the activities of enzymes such as POD, SOD and CAT and up-regulated the expression of gene GPX4, GPX1 and CATC.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Haowen Luo ◽  
Bin Du ◽  
Longxin He ◽  
Jing He ◽  
Lian Hu ◽  
...  

AbstractZinc (Zn) is an important microelement for rice and plays a key role in many physiological processes. This study assessed the physio-biochemical responses involved in biosynthesis of 2-acety-1-pyrroline (2-AP), which is a key compound in the aroma of fragrant rice, in four different fragrant rice varieties, i.e., Meixiangzhan-2, Xiangyaxiangzhan, Ruanhuayou-134, and Yunjingyou. Four concentrations (0, 0.50, 1.00 and 2.00 g L−1) of zinc chloride were applied to fragrant rice foliage at the heading stage and named CK, Zn1, Zn2 and Zn3, respectively. Our results showed that compared with CK, the Zn1, Zn2 and Zn3 treatments all significantly increased the 2-AP concentration in mature grains of the four fragrant rice genotypes. Furthermore, exogenous application of Zn not only enhanced the activities of enzymes, including proline dehydrogenase (PDH), △1-pyrroline-5-carboxylic acid synthetase (P5CS), and diamine oxidase (DAO), which are involved in 2-AP biosynthesis, but also improved the contents of the related precursors, such as Δ1-pyrroline, proline and pyrroline-5-carboxylic acid (P5C). In addition, compared to the CK treatment, the Zn2 treatment markedly increased the net photosynthetic rate of fragrant rice during the grain filling stage and increased the seed-setting rate, 1000-grain weight and grain yield in all fragrant rice genotypes. Foliar application of Zn also markedly increased the grain Zn content. In general, 1.00 g L−1 seemed to be the most suitable application concentration because the highest 2-AP content and grain weight were recorded with this treatment.


2016 ◽  
Vol 8 (1) ◽  
pp. 429-436 ◽  
Author(s):  
M. Kumar ◽  
A. Sarangi ◽  
D. K. Singh ◽  
A.R. Rao ◽  
S. Sudhishri

A field experiment with split-split plot design (SSPD) was conducted to study the response of two winter wheat (Triticumaestivum L.) cultivars (viz. salt tolerant cultivar KRL-1-4 and salt non-tolerant cultivar HD-2894) under saline irrigation regimes with and without foliar potassium fertilization on growth and grain yield of wheat during rabi 2011-12 and 2012-13. Potassium in the ratio of K+: Na+ (1: 10) was applied as foliar application during the heading stage of the crop. Results showed that the grain yield of KRL-1-4 and HD-2894 cultivars with foliar potassium fertilization at the heading stage increased by 6.5 to 22% and 3 to 15% during rabi 2011-2012, respectively under different saline irrigation regimes as compared to the control. Moreover, the results of rabi 2012-13 showed an increase in grain yield ranging from 4.5 to 20% for KRL-1-4 as compared to the control. Statistical analysis of grain yield parameter showed that the foliar potassium application in both varieties resulted in significant yield difference at 0.05 probability level as compared to the non-foliar application. Overall, it was observed that the foliar potassium fertilization increased the grain yield of both wheat cultivars, while the salt tolerant cultivar performed better than the salt non-tolerant cultivar under irrigated saline regimes.


2020 ◽  
Vol 48 (4) ◽  
pp. 485-492
Author(s):  
H. W. Luo ◽  
P. P. Xing ◽  
J. H. Liu ◽  
R. F. Lai ◽  
L. X. He ◽  
...  

2020 ◽  
Author(s):  
Haowen Luo ◽  
Longxin He ◽  
Rifang Lai ◽  
Jinhai Liu ◽  
Pipeng Xing ◽  
...  

1971 ◽  
Vol 7 (1) ◽  
pp. 21-26 ◽  
Author(s):  
N. K. Jain ◽  
D. P. Maurya ◽  
H. P. Singh

SUMMARYLinear regression of grain and straw yield of dwarf wheats on level of fertilizer nitrogen was significant, but the efficiency of fertilizer nitrogen was determined by the time and method of its application. A single application as a basal dressing was the least productive for grain yield, while split fertilization at sowing and at first irrigation increased the efficiency of applied nitrogen. Further splitting in three doses did not benefit wheat. Foliar application of nitrogen to replace top dressing at the heading stage was of no advantage while replacement of a top dressing at first irrigation by urea spray at heading was definitely deleterious.


2020 ◽  
Author(s):  
Xiaomeng Fu ◽  
Lin Ma ◽  
Runfei Gui ◽  
Yuzhan Li ◽  
Xiaojuan Yang ◽  
...  

Abstract Hydrogen is an important molecule, exerting antioxidant ability in plants and animals through antioxidant enzymes, which can be dissolved in water. Previous studies have showed that application of hydrogen rich water (HRW), containing a high concentration of hydrogen, plays an important role in enhancing drought tolerance and alleviating the metal stress in plants. However, the effects of HRW on plant growth and physiological attributes in fragrant rice varieties under salt stress are still unclear. A pot experiment was conducted with two fragrant rice varieties i.e. Yuxiangyouzhan and Xiangyaxiangzhan to study the effects of HRW treatments i.e. foliar application of HRW (F-HRW) and irrigation application of HRW (I-HRW) on plant growth and physiological attributes under two NaCl levels (0 mmol L -1 and 150 mmol L -1 ). The results depicte d that, compared with without HRW treatment (CK), the F-HRW and I-HRW treatments significantly increased the dry weight per unit seedling height by 12.64% and 22.99%, while decreased the plant height by 3.92% and 2.97% respectively of two fragrant rice varieties under salt stress. Moreover, compared with CK treatment, the activities of peroxidase (POD), superoxide dismutase (SOD) and catalase (CAT) were enhanced by F-HRW and I-HRW treatments in NaCl-stressed fragrant rice cultivars and opposite results were observed for MDA content. In crux, our findings conclude that application of HRW modulates the plant growth and physiological attributes in salt-stressed fragrant rice cultivars.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2100
Author(s):  
Aleksandra Radawiec ◽  
Beata Rutkowska ◽  
Justina Anna Tidaback ◽  
Dariusz Gozdowski ◽  
Tomasz Knapowski ◽  
...  

Selenium is a micronutrient that is important for the proper functioning of the body. The research presented in this paper investigated the impact of various methods of selenium fertilization at various stages of plant growth on its content in grain and the quality properties of spring wheat (Triticum aestivum L.). Selenium fertilization did not affect the grain yield; however, it increased the selenium content in the grain. The research results showed that the accumulation of Se depends not only on the dose of the fertilizer but also on the stage of plant growth when the element is introduced. The most effective method of fertilization proved to be seed treatment and soil application combined with the foliar application at the tillering and stem elongation stages (G + S + F1-2), as well as at the stem elongation stage alone (G + S + F2). In terms of quality characteristics, the impact of selenium fertilization was observed only in the case of the falling number and the total protein content; all the parameters allowed for the grain to be classified as suitable for bread-making. Selenium fertilization can be considered as a safe way of increasing the Se content in spring wheat, which may contribute to an increase in the technological quality of the grain and its nutritional value.


Sign in / Sign up

Export Citation Format

Share Document