scholarly journals Healthcare Consultancy System

Author(s):  
Prof. Asma Mokashi ◽  
Pratik Rughe ◽  
Yashashri Malvi ◽  
Neha Ghodekar

Under the present situation, the healthcare delivery system is prohibitively expensive, inefficient, and unsustainable. Machine Learning (ML) has revolutionized the way businesses and individuals use data to increase system performance. Strategists can work with a range of organized, non - structured, and semi-structured data using machine learning algorithms. This device provides a virtual assistant who can converse with patients in their native language to understand their symptoms, recommend doctors, and monitor health metrics. To process users' complaints and find the closest doctor who can help handle the user's case, the solution relies on natural language processing models and machine learning analytic methodology. A deep bilinear similarity model is also proposed by the framework to boost the generated SQL queries used for predictions and algorithms. BERT and SQLOVA models are used to train the device data collection.

2018 ◽  
Author(s):  
Seyedmostafa Sheikhalishahi ◽  
Riccardo Miotto ◽  
Joel T. Dudley ◽  
Alberto Lavelli ◽  
Fabio Rinaldi ◽  
...  

BACKGROUND Worldwide, the burden of chronic diseases is growing, necessitating novel approaches that complement and go beyond evidence-based medicine. In this respect a promising avenue is the secondary use of Electronic Health Records (EHR) data, where clinical data are analysed to conduct basic and clinical and translational research. Methods based on machine learning algorithms to process EHR are resulting in improved understanding of patients’ clinical trajectories and chronic disease risk prediction, creating a unique opportunity to derive previously unknown clinical insights. However, wealth of patients’ clinical history remains locked behind clinical narratives in free-form text. Consequently, unlocking the full potential of EHR data is contingent on development of Natural Language Processing (NLP) methods to automatically transform clinical text into structured clinical data that can be directly processed using machine learning algorithms. OBJECTIVE To provide a comprehensive overview of the development and uptake on NLP methods applied to free-text clinical notes related to chronic diseases, including investigation of challenges faced by NLP methodologies in understanding clinical narratives. METHODS The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed and searches were conducted in 5 databases using “clinical notes”, “natural language processing” and “chronic disease” as keywords as well as their variations to maximise coverage of the articles. RESULTS Of the 2646 articles considered, 100 met the inclusion criteria. Review of the included papers resulted in identification of 42 chronic diseases, which were then further classified into 10 diseases categories using ICD-10. Majority of the studies focused on diseases of circulatory system (N=38) while endocrine and metabolic diseases were fewest (N=12). This was due to the structure of clinical records related to metabolic diseases that typically contain much more structured data than medical records for diseases of circulatory system, which focus more on unstructured data and consequently have seen a stronger focus of NLP. The review has shown that there is a significant increase in the use of machine learning methods compared to rule-based approaches, however deep learning methods remain emergent (N=3). Consequently, majority of works focus on classification of disease phenotype, while only a handful of papers concern the extraction of comorbidities from the free-text or the integration of clinical notes with structured data. There is a notable use of relatively simple methods, such as shallow classifiers (or combination with rule-based methods), due to the interpretability of predictions, which still represents a significant issue for more complex methods. Finally, scarcity of publicly available data may also have contributed to insufficient development of more advanced methods, such as extraction of word embeddings from clinical notes. CONCLUSIONS Efforts are needed to improve (1) progression of clinical NLP methods from extraction towards understanding; (2) recognition of relations among entities, rather than entities in isolation; (3) temporal extraction to understand past, current and future clinical events; (4) exploitation of alternative sources of clinical knowledge; and (5) availability of large-scale, de-identified clinical corpora.


2020 ◽  
Vol 7 (10) ◽  
pp. 380-389
Author(s):  
Asogwa D.C ◽  
Anigbogu S.O ◽  
Anigbogu G.N ◽  
Efozia F.N

Author's age prediction is the task of determining the author's age by studying the texts written by them. The prediction of author’s age can be enlightening about the different trends, opinions social and political views of an age group. Marketers always use this to encourage a product or a service to an age group following their conveyed interests and opinions. Methodologies in natural language processing have made it possible to predict author’s age from text by examining the variation of linguistic characteristics. Also, many machine learning algorithms have been used in author’s age prediction. However, in social networks, computational linguists are challenged with numerous issues just as machine learning techniques are performance driven with its own challenges in realistic scenarios. This work developed a model that can predict author's age from text with a machine learning algorithm (Naïve Bayes) using three types of features namely, content based, style based and topic based. The trained model gave a prediction accuracy of 80%.


Author(s):  
Rashida Ali ◽  
Ibrahim Rampurawala ◽  
Mayuri Wandhe ◽  
Ruchika Shrikhande ◽  
Arpita Bhatkar

Internet provides a medium to connect with individuals of similar or different interests creating a hub. Since a huge hub participates on these platforms, the user can receive a high volume of messages from different individuals creating a chaos and unwanted messages. These messages sometimes contain a true information and sometimes false, which leads to a state of confusion in the minds of the users and leads to first step towards spam messaging. Spam messages means an irrelevant and unsolicited message sent by a known/unknown user which may lead to a sense of insecurity among users. In this paper, the different machine learning algorithms were trained and tested with natural language processing (NLP) to classify whether the messages are spam or ham.


Author(s):  
Saugata Bose ◽  
Ritambhra Korpal

In this chapter, an initiative is proposed where natural language processing (NLP) techniques and supervised machine learning algorithms have been combined to detect external plagiarism. The major emphasis is on to construct a framework to detect plagiarism from monolingual texts by implementing n-gram frequency comparison approach. The framework is based on 120 characteristics which have been extracted during pre-processing steps using simple NLP approach. Afterward, filter metrics has been applied to select most relevant features and supervised classification learning algorithm has been used later to classify the documents in four levels of plagiarism. Then, confusion matrix was built to estimate the false positives and false negatives. Finally, the authors have shown C4.5 decision tree-based classifier's suitability on calculating accuracy over naive Bayes. The framework achieved 89% accuracy with low false positive and false negative rate and it shows higher precision and recall value comparing to passage similarities method, sentence similarity method, and search space reduction method.


2012 ◽  
pp. 13-22 ◽  
Author(s):  
João Gama ◽  
André C.P.L.F. de Carvalho

Machine learning techniques have been successfully applied to several real world problems in areas as diverse as image analysis, Semantic Web, bioinformatics, text processing, natural language processing,telecommunications, finance, medical diagnosis, and so forth. A particular application where machine learning plays a key role is data mining, where machine learning techniques have been extensively used for the extraction of association, clustering, prediction, diagnosis, and regression models. This text presents our personal view of the main aspects, major tasks, frequently used algorithms, current research, and future directions of machine learning research. For such, it is organized as follows: Background information concerning machine learning is presented in the second section. The third section discusses different definitions for Machine Learning. Common tasks faced by Machine Learning Systems are described in the fourth section. Popular Machine Learning algorithms and the importance of the loss function are commented on in the fifth section. The sixth and seventh sections present the current trends and future research directions, respectively.


Author(s):  
João Gama ◽  
André C.P.L.F. de Carvalho

Machine learning techniques have been successfully applied to several real world problems in areas as diverse as image analysis, Semantic Web, bioinformatics, text processing, natural language processing,telecommunications, finance, medical diagnosis, and so forth. A particular application where machine learning plays a key role is data mining, where machine learning techniques have been extensively used for the extraction of association, clustering, prediction, diagnosis, and regression models. This text presents our personal view of the main aspects, major tasks, frequently used algorithms, current research, and future directions of machine learning research. For such, it is organized as follows: Background information concerning machine learning is presented in the second section. The third section discusses different definitions for Machine Learning. Common tasks faced by Machine Learning Systems are described in the fourth section. Popular Machine Learning algorithms and the importance of the loss function are commented on in the fifth section. The sixth and seventh sections present the current trends and future research directions, respectively.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Ari Z. Klein ◽  
Abeed Sarker ◽  
Davy Weissenbacher ◽  
Graciela Gonzalez-Hernandez

Abstract Social media has recently been used to identify and study a small cohort of Twitter users whose pregnancies with birth defect outcomes—the leading cause of infant mortality—could be observed via their publicly available tweets. In this study, we exploit social media on a larger scale by developing natural language processing (NLP) methods to automatically detect, among thousands of users, a cohort of mothers reporting that their child has a birth defect. We used 22,999 annotated tweets to train and evaluate supervised machine learning algorithms—feature-engineered and deep learning-based classifiers—that automatically distinguish tweets referring to the user’s pregnancy outcome from tweets that merely mention birth defects. Because 90% of the tweets merely mention birth defects, we experimented with under-sampling and over-sampling approaches to address this class imbalance. An SVM classifier achieved the best performance for the two positive classes: an F1-score of 0.65 for the “defect” class and 0.51 for the “possible defect” class. We deployed the classifier on 20,457 unlabeled tweets that mention birth defects, which helped identify 542 additional users for potential inclusion in our cohort. Contributions of this study include (1) NLP methods for automatically detecting tweets by users reporting their birth defect outcomes, (2) findings that an SVM classifier can outperform a deep neural network-based classifier for highly imbalanced social media data, (3) evidence that automatic classification can be used to identify additional users for potential inclusion in our cohort, and (4) a publicly available corpus for training and evaluating supervised machine learning algorithms.


2019 ◽  
Vol 63 (4) ◽  
pp. 243-252 ◽  
Author(s):  
Jaret Hodges ◽  
Soumya Mohan

Machine learning algorithms are used in language processing, automated driving, and for prediction. Though the theory of machine learning has existed since the 1950s, it was not until the advent of advanced computing that their potential has begun to be realized. Gifted education is a field where machine learning has yet to be utilized, even though one of the underlying problems of gifted education is classification, which is an area where learning algorithms have become exceptionally accurate. We provide a brief overview of machine learning with a focus on neural networks and supervised learning, followed by a demonstration using simulated data and neural networks for classification issues with a practical explanation of the mechanics of the neural network and associated R code. Implications for gifted education are then discussed. Finally, the limitations of supervised learning are discussed. Code used in this article can be found at https://osf.io/4pa3b/


IoT ◽  
2020 ◽  
Vol 1 (2) ◽  
pp. 218-239 ◽  
Author(s):  
Ravikumar Patel ◽  
Kalpdrum Passi

In the derived approach, an analysis is performed on Twitter data for World Cup soccer 2014 held in Brazil to detect the sentiment of the people throughout the world using machine learning techniques. By filtering and analyzing the data using natural language processing techniques, sentiment polarity was calculated based on the emotion words detected in the user tweets. The dataset is normalized to be used by machine learning algorithms and prepared using natural language processing techniques like word tokenization, stemming and lemmatization, part-of-speech (POS) tagger, name entity recognition (NER), and parser to extract emotions for the textual data from each tweet. This approach is implemented using Python programming language and Natural Language Toolkit (NLTK). A derived algorithm extracts emotional words using WordNet with its POS (part-of-speech) for the word in a sentence that has a meaning in the current context, and is assigned sentiment polarity using the SentiWordNet dictionary or using a lexicon-based method. The resultant polarity assigned is further analyzed using naïve Bayes, support vector machine (SVM), K-nearest neighbor (KNN), and random forest machine learning algorithms and visualized on the Weka platform. Naïve Bayes gives the best accuracy of 88.17% whereas random forest gives the best area under the receiver operating characteristics curve (AUC) of 0.97.


2012 ◽  
Vol 24 (7) ◽  
pp. 1906-1925
Author(s):  
Kailash Nadh ◽  
Christian Huyck

A neurocomputational model based on emergent massively overlapping neural cell assemblies (CAs) for resolving prepositional phrase (PP) attachment ambiguity is described. PP attachment ambiguity is a well-studied task in natural language processing and is a case where semantics is used to determine the syntactic structure. A large network of biologically plausible fatiguing leaky integrate-and-fire neurons is trained with semantic hierarchies (obtained from WordNet) on sentences with PP attachment ambiguity extracted from the Penn Treebank corpus. During training, overlapping CAs representing semantic similarities between the component words of the ambiguous sentences emerge and then act as categorizers for novel input. The resulting average resolution accuracy of 84.56% is on par with known machine learning algorithms.


Sign in / Sign up

Export Citation Format

Share Document