scholarly journals Comparison of Different Clustering Algorithms to Secured VANETs Communication

Author(s):  
Prashant Kumar Shrivastava ◽  
Dr. L. K. Vishwamitra

ITS (Intelligent Transportation Systems) are growing increasingly popular because of the necessity for superior cyber-physical systems and comfort applications and services required for usage in autonomous vehicles. There are two types of Vehicular Ad-Hoc Networks (VANETs) that are vital to ITS: V2I (Vehicle-to-Infrastructure) and V2V (Vehicle-to-Vehicle). VANETs are a new technology with several potential uses in the ITS. It comprises smart vehicles and roadside equipment that connect over open-access wireless networks. An attacker may disrupt vehicular communication which can lead to potentially life-threatening scenarios because of the significant expansion in the number of vehicles in use today. VANETs must use robust security and authentication procedures to provide safe vehicular communication. This paper provides a comprehensive analysis ofthe VANET system including its characteristics and challenges. There is a concept of data dissemination that has been provided in brief. Clustering is the most important topic in VANET that is used to cluster the vehicles to secure and safely message transmission over the network. There is a taxonomy of clustering techniques has provided in a detailed manner. Besides, it has also shown the comparison of different clustering parameters-based mechanisms and MAC protocols in VANET.

Author(s):  
Ameneh Daeinabi ◽  
Akbar Ghaffarpour Rahbar

Vehicular Ad Hoc Networks (VANETs) are appropriate networks that can be applied for intelligent transportation systems. Three important challenges in VANETs are studied in this chapter. The first challenge is to defend against attackers. Because of the lack of a coordination unit in a VANET, vehicles should cooperate together and monitor each other in order to enhance security performance of the VANET. As the second challenge in VANETs, scalability is a critical issue for a network designer. Clustering is one solution for the scalability problem and is vital for efficient resource consumption and load balancing in large scale VANETs. On the other hand, due to the high-rate topology changes and high variability in vehicles density, transmission range of a vehicle is an important issue for forwarding and receiving messages. In this chapter, we study the clustering algorithms, the solutions appropriate to increase connectivity, and the algorithms that can detect attackers in a VANET.


MATICS ◽  
2018 ◽  
Vol 10 (1) ◽  
pp. 1
Author(s):  
Raphael AKINYEDE

<p class="Text"><strong>—<em> </em></strong>In Vehicular Ad-Hoc Networks (VANETs), wireless-equipped vehicles form a network spontaneously while traveling along the road. The direct wireless transmission from vehicle to vehicle makes it possible for them to communicate even where there is no telecommunication infrastructure; this emerging new technology provide ubiquitous connectivity to vehicular nodes while on the move, The main idea is to provide ubiquitous connectivity to vehicular nodes while on the move, and to create efficient vehicle-to-vehicle communications that enable the Intelligent Transportation Systems (ITS). This is achieved by allowing nodes within certain ranges to connect with each other in order to exchange information. Since accident happens in split seconds, to avoid communication inefficiency, there is need for this information to get to the intended vehicle on time. To solve this problem, this work models each vehicle in a chain of others and how it responds to the traffic around it using Microscopic (also known as car-following) method for modeling traffic flow; driver- to-driver and driver-to-road interactions within a traffic stream and the interaction between a driver and another driver on road were considered. The essence of this modeling is to determine the minimum response time required for a vehicle in VANET to respond and communicate situations on the road. A simulated scenario was carried out for two vehicles, a leading vehicle and following vehicle. The result shows that with an average of 32 meters apart with average difference in velocity of   1.23m/s, a minimum of 0.9secs is required for efficient situation response communication to ensue between them.</p>


2020 ◽  
Vol 10 (9) ◽  
pp. 3217 ◽  
Author(s):  
Muhammad Arif ◽  
Guojun Wang ◽  
Oana Geman ◽  
Valentina Emilia Balas ◽  
Peng Tao ◽  
...  

Vehicular ad-hoc networks (VANETs) are the specific sort of ad-hoc networks that are utilized in intelligent transportation systems (ITS). VANETs have become one of the most reassuring, promising, and quickest developing subsets of the mobile ad-hoc networks (MANETs). They include smart vehicles, roadside units (RSUs), and on-board units (OBUs) which correspond through inconsistent wireless network. The current research in the vehicles industry and media transmission innovations alongside the remarkable multimodal portability administrations expedited center-wise ITS, of which VANETs increase considerably more attention. The particular characteristics of the software defined networks (SDNs) use the vehicular systems by its condition of the centralized art having a complete understanding of the network. Security is an important issue in the SDN-based VANETs, as a result of the effect the threats and vulnerabilities can have on driver’s conduct and personal satisfaction. This paper opens a discourse on the security attacks that future SDN-based VANETs should confront and examines how SDNs could be advantageous in building new countermeasures. SDN-based VANETs encourage us to dispose of the confinement and difficulties that are available in the traditional VANETs. It helps us to diminish the general burden on the system by dealing with the general system through a single wireless controller. While SDN-based VANETs provide us some benefits in terms of applications and services, they also have some important challenges which need to be solved. In this study we discuss and elaborate the challenges, along with the applications, and the future directions of SDN-based VANETs. At the end we provide the conclusion of the whole study.


Author(s):  
Nitin Maslekar ◽  
Mounir Boussedjra ◽  
Houda Labiod ◽  
Joseph Mouzna

Vehicular ad hoc networks (VANETs) represent an important component necessary to develop Intelligent Transportation Systems. Recent advances in communications systems have created significant opportunities for a wide variety of applications and services to be implement in vehicles. Most of these applications require a certain dissemination performance to work satisfactorily. Although a variety of optimizations are possible, the basic idea for any dissemination scheme is to facilitate the acquisition of the knowledge about the surrounding vehicles. However, the dynamic nature of vehicular networks makes it difficult to achieve an effective dissemination among vehicles. This chapter provides an overview on those challenges and presents various approaches to disseminate data in vehicular networks.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2895 ◽  
Author(s):  
Pedro Nascimento ◽  
Bruno Kimura ◽  
Daniel Guidoni ◽  
Leandro Villas

In Intelligent Transportation Systems (ITS), the Vehicular Ad Hoc Networks (VANETs) paradigm based on the WAVE IEEE 802.11p standard is the main alternative for inter-vehicle communications. Recently, many protocols, applications, and services have been developed with a wide range of objectives, ranging from comfort to security. Most of these services rely on location systems and require different levels of accuracy for their full operation. The Global Positioning System (GPS) is an off-the-shelf solution for localization in VANETs and ITS. However, GPS systems present problems regarding inaccuracy and unavailability in dense urban areas, multilevel roads, and tunnels, posing a challenge for protocols, applications, and services that rely on localization. With this motivation, we carried out a characterization of the problems of inaccuracy and unavailability of GPS systems from real datasets, and regions around tunnels were selected. Since the nodes of the vehicular network are endowed with wireless communication, processing and storage capabilities, an integrated Dead Reckoning aided Geometric Dilution of Precision (GDOP)-based Cooperative Positioning solution was developed and evaluated. Leveraging the potential of vehicular sensors, such as odometers, gyroscopes, and digital compasses, vehicles share their positions and kinematics information using vehicular communication to improve their location estimations. With the assistance of a digital map, vehicles adjust the final estimated position using the road geometry. The situations of GPS unavailability characterized in the datasets were reproduced in a simulation environment to validate the proposed localization solution. The simulation results show average gains in Root Mean Square Error (RMSE) between 97% to 98% in comparison with the stand-alone GPS solution, and 83.00% to 88.00% against the GPS and Dead Reckoning (DR) only solution. The average absolute RMSE was reduced to the range of 3 to 5 m by vehicle. In addition, the proposed solution was shown to support 100% of the GPS unavailability zones on the evaluated scenarios.


2020 ◽  
Vol 39 (6) ◽  
pp. 8357-8364
Author(s):  
Thompson Stephan ◽  
Ananthnarayan Rajappa ◽  
K.S. Sendhil Kumar ◽  
Shivang Gupta ◽  
Achyut Shankar ◽  
...  

Vehicular Ad Hoc Networks (VANETs) is the most growing research area in wireless communication and has been gaining significant attention over recent years due to its role in designing intelligent transportation systems. Wireless multi-hop forwarding in VANETs is challenging since the data has to be relayed as soon as possible through the intermediate vehicles from the source to destination. This paper proposes a modified fuzzy-based greedy routing protocol (MFGR) which is an enhanced version of fuzzy logic-based greedy routing protocol (FLGR). Our proposed protocol applies fuzzy logic for the selection of the next greedy forwarder to forward the data reliably towards the destination. Five parameters, namely distance, direction, speed, position, and trust have been used to evaluate the node’s stability using fuzzy logic. The simulation results demonstrate that the proposed MFGR scheme can achieve the best performance in terms of the highest packet delivery ratio (PDR) and minimizes the average number of hops among all protocols.


2021 ◽  
Vol 12 (4) ◽  
pp. 1-30
Author(s):  
Zhenchang Xia ◽  
Jia Wu ◽  
Libing Wu ◽  
Yanjiao Chen ◽  
Jian Yang ◽  
...  

Vehicular ad hoc networks ( VANETs ) and the services they support are an essential part of intelligent transportation. Through physical technologies, applications, protocols, and standards, they help to ensure traffic moves efficiently and vehicles operate safely. This article surveys the current state of play in VANETs development. The summarized and classified include the key technologies critical to the field, the resource-management and safety applications needed for smooth operations, the communications and data transmission protocols that support networking, and the theoretical and environmental constructs underpinning research and development, such as graph neural networks and the Internet of Things. Additionally, we identify and discuss several challenges facing VANETs, including poor safety, poor reliability, non-uniform standards, and low intelligence levels. Finally, we touch on hot technologies and techniques, such as reinforcement learning and 5G communications, to provide an outlook for the future of intelligent transportation systems.


Author(s):  
Chong Han ◽  
Sami Muhaidat ◽  
Ibrahim Abualhaol ◽  
Mehrdad Dianati ◽  
Rahim Tafazolli

Vehicular Ad-Hoc Networks (VANETs) are a critical component of the Intelligent Transportation Systems (ITS), which involve the applications of advanced information processing, communications, sensing, and controlling technologies in an integrated manner to improve the functionality and the safety of transportation systems, providing drivers with timely information on road and traffic conditions, and achieving smooth traffic flow on the roads. Recently, the security of VANETs has attracted major attention for the possible presence of malicious elements, and the presence of altered messages due to channel errors in transmissions. In order to provide reliable and secure communications, Intrusion Detection Systems (IDSs) can serve as a second defense wall after prevention-based approaches, such as encryption. This chapter first presents the state-of-the-art literature on intrusion detection in VANETs. Next, the detection of illicit wireless transmissions from the physical layer perspective is investigated, assuming the presence of regular ongoing legitimate transmissions. Finally, a novel cooperative intrusion detection scheme from the MAC sub-layer perspective is discussed.


2018 ◽  
Vol 7 (4.36) ◽  
pp. 350
Author(s):  
Mohammed Saad Talib ◽  
Aslinda Hassan ◽  
Burairah Hussin ◽  
Ali Abdul-Jabbar Mohammed ◽  
Ali Abdulhussian Hassan ◽  
...  

the numbers of accidents are increasing in an exponential manner with the growing of vehicles numbers on roads in recent years.  This huge number of vehicles increases the traffic congestion rates. Therefore, new technologies are so important to reduce the victims in the roads and improve the traffic safety. The Intelligent Transportation Systems (ITS) represents an emerging technology to improve the road's safety and traffic efficiency. ITS have various safety and not safety applications. Numerous methods are intended to develop the smart transport systems. The crucial form is the Vehicular Ad hoc Networks (VANET). VANET is becoming the most common network in ITS. It confirms human’s safety on streets by dissemination protection messages among vehicles. Optimizing the traffic management operations represent an urgent issue in this era a according to the massive growing in number of circulating vehicles, traffic congestions and road accidents. Street congestions can have significant negative impact on the life quality, passenger's safety, daily activities, economic and environmental for citizens and organizations. Current progresses in communication and computing paradigms fetched the improvement of inclusive intelligent devices equipped with wireless communication capability and high efficiency processors.  


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Xiang Ji ◽  
Huiqun Yu ◽  
Guisheng Fan ◽  
Huaiying Sun ◽  
Liqiong Chen

Vehicular ad hoc network (VANET) is an emerging technology for the future intelligent transportation systems (ITSs). The current researches are intensely focusing on the problems of routing protocol reliability and scalability across the urban VANETs. Vehicle clustering is testified to be a promising approach to improve routing reliability and scalability by grouping vehicles together to serve as the foundation for ITS applications. However, some prominent characteristics, like high mobility and uneven spatial distribution of vehicles, may affect the clustering performance. Therefore, how to establish and maintain stable clusters has become a challenging problem in VANETs. This paper proposes a link reliability-based clustering algorithm (LRCA) to provide efficient and reliable data transmission in VANETs. Before clustering, a novel link lifetime-based (LLT-based) neighbor sampling strategy is put forward to filter out the redundant unstable neighbors. The proposed clustering scheme mainly composes of three parts: cluster head selection, cluster formation, and cluster maintenance. Furthermore, we propose a routing protocol of LRCA to serve the infotainment applications in VANET. To make routing decisions appropriate, we nominate special nodes at intersections to evaluate the network condition by assigning weights to the road segments. Routes with the lowest weights are then selected as the optimal data forwarding paths. We evaluate clustering stability and routing performance of the proposed approach by comparing with some existing schemes. The extensive simulation results show that our approach outperforms in both cluster stability and data transmission.


Sign in / Sign up

Export Citation Format

Share Document