scholarly journals Analysis of A Cable Loaded Uniformly Along the Horizontal Using MATLAB

Author(s):  
Megha Shukla ◽  
Lakshminarasimha N

Cables can be defined as a flexible structure which can only support tensile load and offers no resistance when compressed or bent in a curved shape. They have several applications in engineering structures for supporting and transmitting load form one point to another such as bridges, trolley wheels, supports suspension roofs and main load carrying cables in any structure. Hence it becomes necessary for extensive design and analysis study on cables. Therefore in the present paper work, cable of length 600m is uniformly loaded along the horizontal is been considered for the analysis with the mass of 18kg/m of its length and supports its own weight. The aim of the work is to determines mid length tension, maximum tension and total cable length for h= 10, 20, 30, 40, 50, 60, 70 and 80 meters using MATLAB. The result shows that as h increases, the tension in mid length and maximum tension is decreasing, whereas total length of the cable is found increasing.

2018 ◽  
Vol 16 (1_suppl) ◽  
pp. 10-16
Author(s):  
Shiuh-Chuan Her ◽  
Pao-Chu Chien

Introduction: Nanocomposite films have attracted much attention in recent years. Depending on the composition of the film and fabrication method, a large range of applications has been employed for nanocomposite films. Method: In this study, nanocomposite films reinforced with multi-walled carbon nanotubes (MWCNTs) were deposited on the aluminum substrate through hot press processing. A shear lag model and Euler beam theory were employed to evaluate the stress distribution and load carrying capability of the nanocomposite film subjected to tensile load and bending moment. Results: The influence of MWCNT on the Young’s modulus and load carrying capability of the nanocomposite film was investigated through a parametric study. The theoretical predictions were verified by comparison with experimental tests. A close agreement with difference less than 6% was achieved between the theoretical prediction and experimental measurements. Conclusions: The Young’s modulus and load transfer of the nanocomposite film reinforced with MWCNTs increases with the increase of the MWCNT loading. Compared to the neat epoxy film, nanocomposite film with 1 wt % of MWCNT exhibits an increase of 20% in both the Young’s modulus and load carrying capability.


2020 ◽  
Vol 156 ◽  
pp. 05025
Author(s):  
Fengky Satria Yoresta ◽  
Ryotaro Maruta ◽  
Genki Mieda ◽  
Yukihiro Matsumoto

Excellent mechanical and physical properties make carbon fiber reinforced polymer (CFRP) the best options for repair, retrofit, and rehabilitation of civil engineering structures. A great success on application of this material in reinforced concrete (RC) structures has attracted much attention from many researchers to develop it in combination with steel. The number of studies on the use of CFRP composites for strengthening steel structures has still been limited and needs to be more explored. To date, the research in this field has mainly focused on CFRP strengthening with adhesively-bonded technique. This paper reports an experimental study to investigate the performance of slender axial compression steel members partially strengthened with unbonded CFRP composites. The requirements for stiffener to prevent buckling occurred in stiffening region are derived from structural equilibrium conditions. Vacuum-assisted Resin Transfer Molding (VaRTM) method is adopted to form CFRP laminates in the strengthened specimens. Totally eight small scale specimens are tested, and it is clear from the test that improvement in load-carrying capacity can be achieved by using CFRP.


1994 ◽  
Vol 21 (3) ◽  
pp. 396-403 ◽  
Author(s):  
Murray C. Temple ◽  
Sherief S. S. Sakla

Angles used as web members in trusses are often welded to the chords with unbalanced welds. This is necessary because of space limitations. It is not known what effect such a weld has on the compressive load carrying capacity of an angle. The standards and specification examined allow an unbalanced weld for an angle. The justification for using such a weld is based on research conducted on angles in tension. For these members, it was concluded that an unbalanced weld does not affect the tensile load carrying capacity of the angle. Research results for angles with different weld patterns subjected to compressive loads are not available in the literature. Eighteen tests were conducted on angle compression members with various weld patterns. It was determined that an unbalanced weld is detrimental to the load carrying capacity of an intermediate length angle but is beneficial for a slender angle. Key words: angles, column (structural), compressive resistance, effective length, standards, welds.


Eng ◽  
2020 ◽  
Vol 1 (2) ◽  
pp. 240-248
Author(s):  
Mohammad Nurul Islam

Construction of civil engineering structures on or next to a slope requires special attention to meet the bearing capacity requirements of soils. In this paper, to address such a challenge, we present laboratory-scale model tests to investigate the effect of footing shape on the sloped surface. The model comprised of a well stiffened mild steel box with three sides fixed and one side open. We considered both with and without reinforcement to assess the effectiveness of reinforcement on the sloped surface. Also, we used three types of footing (i.e., square, rectangular, and circular) to measure the footing shape effects. We considered three different slope angles to evaluate the impact of the sloped face corresponding to the applied load and the reinforcement application. We obtained that the maximum load carrying capacity in the square footing was higher than the rectangular and the circular footing for both the reinforced and the unreinforced soil. With the increase of geo-reinforcement in all three footing shapes and three sloped angles, the load carrying capacity increased. We also noticed a limiting condition in geo-reinforcement placement effectiveness. And we found that with the increase of slope, the load bearing capacity decreased. For a steep slope, the geo-reinforcement placement and the footing shape selection is crucial in achieving the external load sustainability, which we addressed herein.


2019 ◽  
Vol 9 (17) ◽  
pp. 3609 ◽  
Author(s):  
Wen ◽  
Wang ◽  
Dong ◽  
Fang

The trend of light-weight structures leads to the wide application of high strength steels in engineering structures. When welding high strength steels, under-matched consumables could reduce the cold-cracking tendency, simplifying the preheating process. However, under-matched welds would sometimes make the high strength base metal pointless due to its weak load-carrying capacity. For the purpose of enhancing the fatigue strength of under-matched welded joints, a fracture mechanics-based optimal fatigue design method of under-matched butt-welded joints is proposed in this work. Heterogeneous mechanical features of welded joints, which are not considered in current standards and codes, are incorporated into the optimal design method. The fatigue limit of the high strength parent metal is taken as the design target, which has seldom been reported. HSLA steel Q550, with its under-matched consumable ER70S-6 composed X-shaped butt-welds, is selected for experimental verification. The experimental results indicate that the fracture mechanic based equal-fatigue-bearing-capacity (EFBC) design method established in this work is feasible and could be a valuable reference for the design of practical engineering structures.


2015 ◽  
Vol 8 (1) ◽  
pp. 33-41 ◽  
Author(s):  
Toshihisa Mano ◽  
Ingbert Mangerig

2021 ◽  
Vol 7 ◽  
Author(s):  
Adithya Challapalli ◽  
John Konlan ◽  
Dhrumil Patel ◽  
Guoqiang Li

Cellular materials have been widely used in load carrying lightweight structures. Although lightweight increases natural frequency, low stiffness of cellular structures reduces natural frequency. Designing structures with higher natural frequency can usually avoid resonance. In addition, because of the less amount of materials used in cellular structures, the energy absorption capability usually decreases such as under impact loading. Therefore, designing cellular structures with higher natural frequency and higher energy absorption capability is highly desired. In this study, machine learning and novel inverse design techniques enable to search a huge space of unexplored structural designs. In this study, machine learning regression and Generative Neural Networks (GANs) were used to form an inverse design framework. Optimal cellular unit cells that surpass the performance of biomimetic structures inspired from honeycomb, plant stems and trabecular bone in terms of natural frequency and impact resistance were discovered using machine learning. The discovered optimal cellular unit cells exhibited 30–100% higher natural frequency and 300% higher energy absorption than those of the biomimetic counterparts. The discovered optimal unit cells were validated through experimental and simulation comparisons. The machine learning framework in this study would help in designing load carrying engineering structures with increased natural frequency and enhanced energy absorption capability.


Sign in / Sign up

Export Citation Format

Share Document