scholarly journals Prospects for the use of peat in biotechnology and for production products of its processing

Author(s):  
O. O. Korytko

The article summarizes information on the use of peat - a natural substrate in agro-industrial production, maintaining the cleanliness of the soil and maintaining the cleanliness of the environment. Intensive anthropological activity in modern conditions often leads to the deterioration of the ecological situation of the environment, disruption of the interaction between living organisms and the environment. Biological destruction of the ecological system inherent in a given area can occur under the influence of excessive use of agrochemicals, pesticides, microorganisms with altered characteristics due to interaction with infectious agents or parasites, as well as due to changes in the gene pool of living under the influence of genetic engineering. At the present stage in world development, importance is attached to the approximation of agricultural technologies to the natural conditions of operation. Cleaning the environment, preserving and increasing soil fertility, obtaining high-quality and environmentally friendly agricultural products is a vital but at the same time costly process, which involves significant economic costs. Therefore, there is a need to find cheap ways to solve this problem, replace expensive fertilizers with alternative means, the rational use of biological factors that increase the effectiveness of chemicals. For this purpose, biosubstrates, peat, natural fertilizers and preparations are widely used in world, especially organic agriculture, which are created by the method of selection of effective compositions of microorganism strains in order to activate regenerative processes in soils and ensure their potential. Peat is a natural raw material, an important agro-industrial resource with great potential, which has a multifaceted application. The most reactive part of peat is the population of microorganisms. With the participation of symbiotic microorganisms, the mineralization of peat components occurs, as a result of which nutrients become available to plants. The practice of using peat in agriculture shows its effectiveness as an organic fertilizer, peat-based composts increase soil fertility, agricultural productivity in general, improve environmental cleanliness. Peat has long been used in livestock facilities for bedding. Peat litter has advantages over straw litter due to its high absorption and moisture retention capacity, antibiotic properties. Waste litter is used for composting, as a valuable organic fertilizer to improve soil fertility. Peat is an important source of humic substances in the world, so it is used to produce humic preparations.

2016 ◽  
Vol 9 (1) ◽  
pp. 80-95
Author(s):  
Agus Sudibyo ◽  
Sardjono Sardjono

Crude palm oil (CPO)is the richest natural plant source of carotenoids in terms of retinol (pro-vitamin A) equivalent, whereas palm oil mill effluent (POME) is generated from palm oil industry that contains oil and carotenes that used to be treated before discharge. Carotenoids are importance in animals and humans for the purpose of the enhancement of immune response, conversion of vitamin A and scavenging of oxygen radicals. This component has different nutritional  functions and benefits to humaan health. The growing interest in the other natural sources of beta-carotene and growing awareness to prevent pollution has stimulated the industrial use of CPO and POME as a raw material for carotenoids extraction. Various technologies of extraction and separation have been developed in order to recover of carotenoids.This article reports on various technologies that have been developed in order to recover of carotenoids from being destroyed in commercial refining of palm oil and effects of some various treatments on the extraction end separation for carotenoid from palm oil and carotenoids concentration. Principally, there are different technologies, and there is one some future which is the use of solvent. Solvent plays important role  in the most technologiest, however the problem of solvents which are used is that they posses potentiaal fire health and environmental hazards. Hence selection of the  most safe, environmentally friendly and cost effective solvent is important to design of alternative extraction methods.Chemical molecular product design is one of the methods that are becoming more popular nowadays for finding solvent with the desired properties prior to experimental testing.ABSTRAKMinyak sawit kasar merupakan sumber karotenoid terkaya yang berasal dari tanaman sawit sebagai senyawa yang sama dengan retinol atau pro-vitamin A; sedangkan limbah pengolahan minyak sawit dihasilkan dari industri pengolahan minyak sawit yang berisi minyak dan karotene yang perlu diberi perlakuan terlebih dahulu sebelum dibuang. Karotenoid merupakan bahan penting yang diperlukan pada hewan dan manusia guna memperkuat tanggapan terhadap kekebalan, konversi ke vitamin A dan penangkapan gugus oksigen radikal. Dengan berkembangnya ketertarikan dalam mencari beta-karotene yang bersumber dari alam lain dan meningkatnya kesadaran untuk mencegah adanya pencemaran lingkungan, maka mendorong suatu industri untuk menggunakan CPO dan POME sebagai bahan baku untuk diekstrak karotenoidnya. Berbagai macam teknologi guna mengekstrak dan memisahkan karotenoid telah dikembangkan untuk mendapatkan kembali karotenoidnya. Makalah ini melaporkan dan membahas berbagai jenis teknologi yang telah dikembangkan guna mendapatkan kembali senyawa karotenoid dari kerusakan di dalam proses pemurnian minyak sawit secara komersial dan pengaruh beberapa perlakuan terhadap ekstrasi dan pemisahan karotenoid dari minyak sawit dan konsentrasi karotenoidnya. Pada prinsipnya, berbagai teknologi yang digunakan untuk mengekstrak dan memisahkan karotenoid terdapat perbedaan, dan terdapat salah satu teknologi yang digunakan untuk esktrasi dan pemisahan karotenoid adalah menggunakan bahan pelarut. Pelarut yang digunakan mempunyai peranan yang penting dalam teknologi ekstrasi; namun pelarut yang digunakan untuk mengekstrak tersebut mempunyai persoalan karena berpotensi mengganggu kesehatan dan membahayakan cemaran lingkungan. Oleh karena itu, pemilihan jenis teknologi yang aman, ramah terhadap lingkungan dan biaya yang efektif untuk penggunaan pelarut merupakan hal penting sebelum dilakukan desain metode/teknologi alternatif untuk esktrasi karotenoid. Pola produk molekuler kimia merupakan salah satu metode yang saat ini menjadi lebih populer untuk mencari pelarut dengan sifat-sifat yang dikehendaki sebelum diujicobakan. Kata kunci :    karotenoid, ekstrasi, pemisahan, teknologi, minyak sawit kasar, limbah industri pengolahan sawit.


2018 ◽  
Vol 7 (2) ◽  
Author(s):  
Firman L. Sahwan

Organic materials that are generally used as raw material for organic fertilizer granules (POG) is a natural organic material that has been degrade, smooth and dry. One of the main raw materials are always used with a very high percentage of usage, is manure. Manure potential in Indonesia is very high, amounting to 113.6 million tons per year, or 64.7 million tons per year to the island of Java. From this amount, it will be generated numbers POG production potential of 17.5 million tons per year (total Indonesia) or 9.9 million tons per year for the island of Java. While the realistic POG production predictions figures made from raw manure is 2.5 million tons annually, a figure that has been unable to meet the number requirement of POG greater than 4 million tons per year. Therefore, in producing POG, it should be to maximize the using of the potential of other organic materials so that the use of manure can be saved. With the use of a small amount of manure (maximum 30% for cow manure), it would be useful also to avoid the production of POG with high Fe content.keywods: organic material, manure, granule organic fertilizer


2019 ◽  
Vol 97 (8) ◽  
pp. 5-10
Author(s):  
Je. Skryl'nyk ◽  
A. Kutova ◽  
V. Getmanenko ◽  
G. Tsygichko

2021 ◽  
Vol 672 (1) ◽  
pp. 012071
Author(s):  
N K I Mayasti ◽  
R Kumalasari ◽  
R Ekafitri ◽  
D Desnilasari ◽  
D N Surahman ◽  
...  
Keyword(s):  

Fuel ◽  
1988 ◽  
Vol 67 (11) ◽  
pp. 1589-1591 ◽  
Author(s):  
E BJORNBOM ◽  
P BJORNBOM
Keyword(s):  

2005 ◽  
Vol 59 (5-6) ◽  
pp. 529-547
Author(s):  
Radosav Mitrovic ◽  
Ranko Kljajic ◽  
Mihajlo Vicentijevic

The paper presents instructive methodology for introducing and realizing the HACCP system in pig production, as a typical representative of intensive breeding, with the objective of establishing radiation-hygiene supervision. Attention was focused on the type of pig diet as the key link in the production chain, in fact the selection of the raw material components necessary in the production of pig feed concentrates for intense breeding conditions, and on the establishment of a certain radiation-hygiene balance through prognostic-selective methodology, as a guarantee of radiation safety.


JOM ◽  
2021 ◽  
Author(s):  
Joalet Dalene Steenkamp ◽  
Kondwani Wesley Banda ◽  
Pieter Johannes Andries Bezuidenhout ◽  
Glen Michael Denton

AbstractThe Pyrometallurgy Division at Mintek is known internationally for the development of applications of direct current (DC) arc furnace technology in smelting applications, more specifically in the smelting of primary resources, i.e., chromite, ilmenite, titanomagnetite, nickel laterite and ores containing precious group metals, and secondary resources, i.e., furnace slag or dust. From a furnace containment perspective, either an insulating or a conductive design philosophy can be applied, irrespective of the raw material being processed. In the initial stages of a project, desktop studies are typically conducted which include the selection of a furnace containment design philosophy, specific to the application. To lower the risk associated with incorrect selection of a design philosophy and/or furnace containment system components, it is prudent to conduct tests on laboratory and pilot scale and to transfer the knowledge gained to industrial applications. The paper presents examples of the laboratory and pilot techniques utilized.


2013 ◽  
Vol 10 (2) ◽  
pp. 59-62
Author(s):  
Vladimír Sitkey ◽  
Ján Gaduš ◽  
Ľubomír Kliský ◽  
Alexander Dudák

Abstract Energy variety of amaranth (Amaranthus spp.) was grown in large-scale trials in order to verify the capability of its cultivation and use as a renewable energy source in a biogas plant. The possibility of biogas production using anaerobic co-fermentation of manure and amaranth silage was verified in the experimental horizontal fermentor of 5 m3 volume, working at mesophilic conditions of 38-40 °C. The goal of the work was also to identify the optimum conditions for growth, harvesting and preservation of amaranth biomass, to optimize biogas production process, and to test the residual slurry from digestion process as a high quality organic fertilizer. The average yield of green amaranth biomass was 51.66 t.ha-1 with dry matter content of 37%. Based on the reached results it can be concluded that amaranth silage, solely or together with another organic materials of agricultural origin, is a suitable raw material for biogas production.


Nafta-Gaz ◽  
2021 ◽  
Vol 77 (3) ◽  
pp. 208-214
Author(s):  
Michał Pajda ◽  
◽  
Wojciech Mazela ◽  

The aim of the work was to present the issue of eco-efficiency, based on the PN-EN ISO 14045:2012 standard in relation to the production of fatty acid methyl esters (FAME). The ecoefficiency analysis takes into account economic and environmental aspects in the improvement of products and processes / technologies. Eco-efficiency considers the product and technology throughout the life cycle, from the construction phase, through use to decommissioning. The impact on the natural environment is assessed on the basis of: consumption of energy, materials, dust and gas emissions, waste and sewage. Total costs include: production costs, raw material costs, costs during the use phase including maintenance, repair and operating costs, product disposal or recycling. The eco-efficiency analysis is helpful in making decisions regarding the selection of a new product or designing a new technology, and enables the selection of the variant that is the most economical and has the least possible impact on the natural environment. These issues are particularly important in the case of biofuels. The rapid growth of their production and the European Union’s policy, which aims to increase the share of energy from renewable sources, cause concerns of many experts regarding the threats related to the production of biofuels, both for the environment and food security. In particular, efforts are made to minimize the amount of waste and residues by implementing the idea of a circular economy. This approach promotes the development of new technologies that are more environmentally friendly. Due to the regulations set out in the RED and RED II Directives, there is a chance that the biofuels will have a less negative impact on the environment. This results from the obligation to certify compliance with the sustainability criteria, which is carried out by voluntary systems recognized by the European Commission, such as the KZR INiG System.


Sign in / Sign up

Export Citation Format

Share Document