Pembuatan dan Karakterisasi Kapasitor Barium Strontium Titanat (Bst) Ba0,75 Sr0,25 TiO3

Author(s):  
Rahmi Dewi ◽  
Krisman Krisman ◽  
Tiara Pertiwi ◽  
Tengku Luqman

Lapisan tipis Barium Strontium Titanate (BST) telah ditelaah dengan komposisi  Ba0.75 Sr0.25 TiO3 menggunakan metode sol-gel yang digabungkan pada suhu 600 dan 650oC. Lapisan tipis BST dikarakterisasi menggunakan Field Emission Scanning Electron Microscopy (FESEM) dan spektroskopi impedansi. Hasil dari karakterisasi FESEM untuk sampel pada suhu 600 dan 650oC ialah 55.83 nm dan 84.88 nm dari segi ketebalan secara berurutan. Hasil dari karakterisasi spektroskopi impedansi berdasarkan nilai frekuensi menunjukkan nilai impedansi yang nyata dan imajiner. Nilai kapasitsa pada frekuensi 20 Hz dari lapisan tipis BST pada suhu 600 dan 650oC ialah 69.36 dan 138.70 F. Konstanta dielektrik dari lapisan tipis BST pada suhu 600 dan 650oC ialah 22.17 dan 131.56 secara berurutan.   The thin film of Barium Strontium Titanate (BST) has been studied with composition of Ba0.75 Sr0.25 TiO3 by using sol-gel method that annealed in temperature of 600oC and 650oC. The thin film of BST is characterized by using Field Emission Scanning Electron Microscopy (FESEM) and an impedance spectroscopy. The results of FESEM characterization for samples in temperature of 600 dan 650oC are 55.83 nm and 84.88 nm in thickness respectively. The result of impedance spectroscopy characterization given frequency values obtained by the impedance value of real and imaginary.The capacitance value at a frequency of 20 Hz from a thin film of BST in temperature of 600 dan 650oC are 69.36 F and 138.7oF. The dielectric constant of the thin film of BST in temperature of 600 dan 650oC are 22.17 and 131.56 respectively.

2019 ◽  
Vol 16 (1) ◽  
pp. 65
Author(s):  
Rahmi Dewi ◽  
Tiara Pertiwi ◽  
Krisman Krisman

The thin film of Barium Strontium Titanate (BST) has been studied withcomposition ofby using sol-gel method that annealed in temperature of 600oC and 650oC. The thin film of BST is characterized by using Field Emission Scanning Electron Microscopy (FESEM) and an impedance spectroscopy. The results of  FESEM characterization for samples in temperature of 600oC and 650oC are 55.83 nm and 84.88 nm in thickness respectively. The result of impedance spectroscopy characterization given frequency values obtained by the impedance value of real and imaginary.The capacitance value at a frequency of 20 Hz from a thin film of BST in temperature of 600oC and 650oC are 69.36Fand138.70F. The dielectric constant of the thin film of BST in temperature of 600oC and 650oC are 22.17 dan 131.56 respectively.


2015 ◽  
Vol 18 (53) ◽  
Author(s):  
Rahmi Dewi ◽  
Krisman ◽  
Khaironiati ◽  
Fauziana

Sampel Barium Strontium Titanate, Ba0.8Sr0.2TiO3 (BST) telah disediakan dengan menggunakan reaksi kimia padatan. Mikrostruktur sampel telah dikarakterisasi dengan menggunakan teknik difraksi sinar-X (XRD) dan Scanning  Electron Microscopy (SEM). Sampel disediakan dengan variasi suhu yang berbeda yaitu pada suhu 600oC, 700 oC dan 800oC selama 60 menit di udara. Karakterisasi XRD menunjukkan dengan meningkatnya suhu annealing maka kristaline sampel semakin meningkat dengan struktur tetragonal. Karakterisasi SEM menunjukkan sampel adalah homogen dengan ukuran butiran  seragam. Ukuran butiran sampel akan bertambah dengan bertambahnya suhu annealing. Seluruh sampel mempunyai ukuran butiran dalam nanometer.


2013 ◽  
Vol 832 ◽  
pp. 128-131
Author(s):  
Sharipah Nadzirah ◽  
Uda Hashim

Titania or titanium dioxide (TiO2) thin film has been synthesized via sol-gel method with monoethanolamine (MEA) as a catalyst. The mixing of titanium butoxide as a precursor, ethanol as a solvent and MEA were stirred using magnetic stirrer under ambient temperature [. The TiO2solution prepared then was deposited on SiO2substrates using spin-coater and the coated films were annealed at 600°C. Finally, both before and after annealed TiO2thin films were characterized using Field Emission Scanning Electron Microscopy (FESEM). The obtained results show the different TiO2particles formation before and after annealed.


2013 ◽  
Vol 701 ◽  
pp. 150-153
Author(s):  
A. Aziz ◽  
M.M. Mahat ◽  
A.H. Ahmad

The effect of filler to the binary compound of Magnesium Iodide ( MgI2) and Magnesium Phosphate (Mg3(PO4)2is investigated. A small amount Alumina (Al2O3) filler in the range of 2-10 weight percent is added to the optimum composition with maximum conductivity of binary compound 0.7 Mg3(PO4)2and 0.3 MgI2.The electrical conductivity of theMgI2- Mg3(PO4)2- Al2O3measured using the impedance spectroscopy (IS) method and result shows that the electrical conductivity of the compound has improved up to 9.84x10-4Scm-1. Field Emission Scanning Electron Microscopy (FESEM) images show some changes in the morphology after introduce the filler. The samples with filler showsnano flakes like structure with some space createdallowing the Mg2+cations to migrate that lead to enhanced conductivity.


2007 ◽  
Vol 534-536 ◽  
pp. 157-160 ◽  
Author(s):  
M.A. Dar ◽  
S.G. Ansari ◽  
Rizwan Wahab ◽  
Young Soon Kim ◽  
Hyung Shik Shin

Maghemite and hematite nanospheres were synthesized by using the Sol-gel technique. The structural properties of these nanosphere powders were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM),and pore size distribution.Hematite phase shows crystalline structures.The mean particle size that resulted from BET and XRD analyses were 4.9 nm and 2 nm. The field emission scanning electron microscopy shows iron-oxide powder is composed of nanosized particles, but in nanosized aggregates (agglomeration of particles). It can be seen from transmission electron microscopy that the size of the particles are very small which is in good agreement with the FESEM and the Xray diffraction. TEM and FESEM confirmed that the iron-oxide powder is composed of sizes from 8 nm to 10 nm. The BET and pore size method were employed for specific surface area determination.


2020 ◽  
Vol 5 (1) ◽  
pp. 11-20
Author(s):  
Rahmi Dewi ◽  
Krisman Krisman ◽  
Zulkarnaen Zulkarnaen ◽  
Rahmi Afrida Syahraini ◽  
TS Luqman Husein

A thin layer of Barium Strontium Titanate Ba0.15Sr0.85TiO3 (BST) was developed on a glass substrate using a sol-gel method with annealing temperatures and spin coating process at 3500 rpm for 30 seconds. The annealing temperature varied from 600oC, 650oC, and 700oC.  Characterization of optical properties was developed using UV-Vis spectroscopy to determine the energy bandgap. The values of the BST thin layer energy band at the annealing temperature were 3.55 eV, 3.32 eV, and 3.10 eV, respectively. The results indicate that the BST thin film was a semiconductor material.


2012 ◽  
Vol 531-532 ◽  
pp. 614-617 ◽  
Author(s):  
Gunawan ◽  
I. Sopyan ◽  
A. Naqshbandi ◽  
S. Ramesh

Biphasic calcium phosphate powders doped with zinc (Zn-doped BCP) were synthesized via sol-gel technique. Different concentrations of Zn have been successfully incorporated into biphasic calcium (BCP) phases namely: 1%, 2%, 3%, 5%, 7%, 10% and 15%. The synthesized powders were calcined at temperatures of 700-900°C. The calcined Zn-doped BCP powders were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), differential and thermogravimetric analysis (TG/DTA) and field-emission scanning electron microscopy (FESEM). X-ray diffraction analysis revealed that the phases present in Zn-doped are hydroxyapatite, β- TCP and parascholzite. Moreover, FTIR analysis of the synthesized powders depicted that the bands of HPO4 increased meanwhile O-H decreased with an increase in the calcination temperature. Field emission scanning electron microscopy (FESEM) results showed the agglomeration of particles into microscale aggregates with size of the agglomerates tending to increase with an increase in the dopant concentration.


2015 ◽  
Vol 814 ◽  
pp. 39-43 ◽  
Author(s):  
Lei Lei Chen ◽  
Hong Mei Deng ◽  
Ke Zhi Zhang ◽  
Ling Huang ◽  
Jian Liu ◽  
...  

Cu2MnSnS4 thin film was successfully prepared by a sol-gel technique on soda lime glass substrate from metal salts and thiourea. The structural and morphological properties of the fabricated film were characterized by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and atomic force microscopy. The combination of the X-ray diffraction results and Raman spectroscopy reveal that this obtained layer is composed by Cu2MnSnS4 phase and has a stannite structure with preferential orientation along the (112) direction. The scanning electron microscopy and atomic force microscopy results show that the synthesized thin film is smooth and compact without any visible cracks or pores. The band gap of the Cu2MnSnS4 thin film is about 1.29 eV determined by the UV-vis-NIR absorption spectra measurement, which indicates it has potential applications in solar cells.


Sign in / Sign up

Export Citation Format

Share Document