scholarly journals Ethylene Mediated Regulation of Sex Expression in Cucumis

Author(s):  
Rafael Perl-Treves ◽  
Rebecca Grumet ◽  
Nurit Katzir ◽  
Jack E. Staub

Monoecious species such as melon and cucumber develop separate male and female (or bisexual) flowers on the same plant individual. They display complex genetic and hormonal regulation of sex patterns along the plant. Ethylene is known to play an important role in promoting femaleness and inhibiting male development, but many questions regarding critical sites of ethylene production versus perception, the relationship between ethylene and the sex determining loci, and the possible differences between melon and cucumber in this respect are still open. The general goal of the project was to elucidate the role of ethylene in determining flower sex in Cucumis species, melon and cucumber. The specific Objectives were: 1. Clone and characterize expression patterns of cucumber genes involved in ethylene biosynthesis and perception. 2. Genetic mapping of cloned genes and markers with respect to sex loci in melon and cucumber. 3. Produce and analyze transgenic melons altered in ethylene production or perception. In the course of the project, some modifications/adjustments were made: under Objective 2 (genetic mapping) a set of new mapping populations had to be developed, to allow better detection of polymorphism. Under Objective 3, cucumber transformation systems became available to us and we included this second model species in our plan. The main findings of our study support the pivotal role of ethylene in cucumber and melon sex determination and later stages of reproductive development. Modifying ethylene production resulted in profound alteration of sex patterns in melon: femaleness increased, and also flower maturation and fruit set were enhanced, resulting in earlier, more concentrated fruit yield in the field. Such effect was previously unknown and could have agronomic value. Our results also demonstrate the great importance of ethylene sensitivity in sex expression. Ethylene perception genes are expressed in sex-related patterns, e.g., gynoecious lines express higher levels of receptor-transcripts, and copper treatments that activate the receptor can increase femaleness. Transgenic cucumbers with increased expression of an ethylene receptor showed enhanced femaleness. Melons that expressed a defective receptor produced fewer hermaphrodite flowers and were insensitive to exogenous ethylene. When the expression of defective receptor was restricted to specific floral whorls, we saw that pistils were not inhibited by the blocked perception at the fourth whorl. Such unexpected findings suggest an indirect effect of ethylene on the affected whorl; it also points at interesting differences between melon and cucumber regarding the mode of action of ethylene. Such effects will require further study. Finally, our project also generated and tested a set of novel genetic tools for finer identification of sex determining genes in the two species and for efficient breeding for these characters. Populations that will allow easier linkage analysis of candidate genes with each sex locus were developed. Moreover, effects of modifier genes on the major femaleness trait were resolved. QTL analysis of femaleness and related developmental traits was conducted, and a comprehensive set of Near Isogenic Lines that differ in specific QTLs were prepared and made available for the private and public research. Marker assisted selection (MAS) of femaleness and fruit yield components was directly compared with phenotypic selection in field trials, and the relative efficiency of MAS was demonstrated. Such level of genetic resolution and such advanced tools were not used before to study these traits, that act as primary yield components to determine economic yields of cucurbits. In addition, this project resulted in the establishment of workable transformation procedures in our laboratories and these can be further utilized to study the function of sex-related genes in detail.

1998 ◽  
Vol 158 (2) ◽  
pp. 173-181 ◽  
Author(s):  
ST Leung ◽  
TS Reynolds ◽  
DC Wathes

The hormonal regulation of uterine oxytocin receptors (OTR) during the establishment of pregnancy and at parturition has been studied extensively, but little information is available during mid-pregnancy. This study investigated the localisation of OTR mRNA in the ovine placentome throughout gestation and related this to expression patterns for the putative regulatory agents aromatase, oestradiol receptor, progesterone receptor and oxytocin. Placentomes were collected at regular intervals throughout pregnancy for in situ hybridisation analysis and immunocytochemistry (oestradiol receptor only). Results were quantified by optical density measurements of autoradiographs. Progesterone receptor mRNA was localised to the caruncular tissues on day 30 but became undetectable by day 34. Aromatase mRNA appeared in the fetal villi at days 34-40, with concentrations peaking at days 52-55 and again at days 132-137. Oestradiol receptor mRNA was localised to the caruncular tissues from days 13 to 30 and found in the maternal villi and placentome capsule from days 45 to 70. Oestradiol receptor protein was barely detectable in either tissue. OTR mRNA was localised to the placentome capsule at days 34-40, remaining high at day 45 and declining to basal levels by days 132-137. Oxytocin mRNA was not detected in the placentome. In conclusion: (1) progesterone acting via its receptor may suppress the expression of aromatase and OTR in early pregnancy; (2) the up-regulation of OTR expression in the capsule may not involve the oestradiol receptor; (3) there is a differential regulation between different regions of the uterus as the increase in the placentome capsule occurs at a time when concentrations in the rest of the endometrium and myometrium remain low; (4) oestradiol receptor expression in the placentome may be regulated at the translational level; and (5) there is no local production of oxytocin in the sheep placenta. The role of ORTs in the capsule during mid-pregnancy remains to be determined.


2020 ◽  
Vol 27 ◽  
Author(s):  
Ji-Yeon Lee ◽  
Myoung Hee Kim

: HOX genes belong to the highly conserved homeobox superfamily, responsible for the regulation of various cellular processes that control cell homeostasis, from embryogenesis to carcinogenesis. The abnormal expression of HOX genes is observed in various cancers, including breast cancer; they act as oncogenes or as suppressors of cancer, according to context. In this review, we analyze HOX gene expression patterns in breast cancer and examine their relationship, based on the three-dimensional genome structure of the HOX locus. The presence of non-coding RNAs, embedded within the HOX cluster, and the role of these molecules in breast cancer have been reviewed. We further evaluate the characteristic activity of HOX protein in breast cancer and its therapeutic potential.


2021 ◽  
Vol 9 (6) ◽  
pp. 1242
Author(s):  
Loganathan Ponnusamy ◽  
Haley Sutton ◽  
Robert D. Mitchell ◽  
Daniel E. Sonenshine ◽  
Charles S. Apperson ◽  
...  

The transovarial transmission of tick-borne bacterial pathogens is an important mechanism for their maintenance in natural populations and transmission, causing disease in humans and animals. The mechanism for this transmission and the possible role of tick hormones facilitating this process have never been studied. Injections of physiological levels of the tick hormone, 20-hydroxyecdysone (20E), into part-fed (virgin) adult females of the American dog tick, Dermacentor variabilis, attached to the host caused a reduction in density of Rickettsia montanensis in the carcass and an increase in the ovaries compared to buffer-injected controls. This injection initiates yolk protein synthesis and uptake by the eggs but has no effect on blood feeding. Francisella sp. and R. montanensis were the predominant bacteria based on the proportionality in the carcass and ovary. The total bacteria load increased in the carcass and ovaries, and bacteria in the genus Pseudomonas increased in the carcass after the 20E injection. The mechanism of how the Rickettsia species respond to changes in tick hormonal regulation needs further investigation. Multiple possible mechanisms for the proliferation of R. montanensis in the ovaries are proposed.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yuanfeng Gao ◽  
Ye Liu ◽  
Yuan Fu ◽  
Qianhui Wang ◽  
Zheng Liu ◽  
...  

Abstract Introduction The progression of paroxysmal AF (PAF) to persistent AF (PsAF) worsens the prognosis of AF, but its underlying mechanisms remain elusive. Recently, circular RNAs (circRNAs) were reported to be associated with cardiac fibrosis. In case of the vital role of cardiac fibrosis in AF persistency, we hypothesis that circRNAs may be potential regulators in the process of AF progression. Materials and methods 6 persistent and 6 paroxysmal AF patients were enrolled as derivation cohort. Plasma circRNAs expressions were determined by microarray and validated by RT-PCR. Fibrosis level, manifested by serum TGF-β, was determined by ELISA. Pathways and related non-coding RNAs involving in the progression of AF regulated were predicted by in silico analysis. Results PsAF patients showed a distinct circRNAs expression profile with 92 circRNAs significantly dysregulated (fold change ≥ 2, p < 0.05), compared with PAF patients. The validity of the expression patterns was subsequently validated by RT-PCR in another 60 AF patients (30 PsAF and PAF, respectively). In addition, all the 5 up and down regulated circRNAs were clustered in MAPK and TGF-beta signaling pathway by KEGG pathway analysis. Among the 5 circRNAs, hsa_circ_0004104 was consistently downregulated in PsAF group (0.6 ± 0.33 vs 1.46 ± 0.41, p < 0.001) and predicted to target several AF and/or cardiac fibrosis related miRNAs reported by previous studies. In addition, TGF-β1 level was significantly higher in the PsAF group (5560.23 ± 1833.64 vs 2236.66 ± 914.89, p < 0.001), and hsa_circ_0004104 showed a significant negative correlation with TGF-β1 level (r = − 0.797, p < 0.001). Conclusion CircRNAs dysregulation plays vital roles in AF persistency. hsa_circ_0004104 could be a potential regulator and biomarker in AF persistency by promoting cardiac fibrosis via targeting MAPK and TGF-beta pathways.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 437
Author(s):  
Ting Gong ◽  
Weiyong Wang ◽  
Houqiang Xu ◽  
Yi Yang ◽  
Xiang Chen ◽  
...  

Testicular expression of taste receptor type 1 subunit 3 (T1R3), a sweet/umami taste receptor, has been implicated in spermatogenesis and steroidogenesis in mice. We explored the role of testicular T1R3 in porcine postnatal development using the Congjiang Xiang pig, a rare Chinese miniature pig breed. Based on testicular weights, morphology, and testosterone levels, four key developmental stages were identified in the pig at postnatal days 15–180 (prepuberty: 30 day; early puberty: 60 day; late puberty: 90 day; sexual maturity: 120 day). During development, testicular T1R3 exhibited stage-dependent and cell-specific expression patterns. In particular, T1R3 levels increased significantly from prepuberty to puberty (p < 0.05), and expression remained high until sexual maturity (p < 0.05), similar to results for phospholipase Cβ2 (PLCβ2). The strong expressions of T1R3/PLCβ2 were observed at the cytoplasm of elongating/elongated spermatids and Leydig cells. In the eight-stage cycle of the seminiferous epithelium in pigs, T1R3/PLCβ2 levels were higher in the spermatogenic epithelium at stages II–VI than at the other stages, and the strong expressions were detected in elongating/elongated spermatids and residual bodies. The message RNA (mRNA) levels of taste receptor type 1 subunit 1 (T1R1) in the testis showed a similar trend to levels of T1R3. These data indicate a possible role of T1R3 in the regulation of spermatid differentiation and Leydig cell function.


2021 ◽  
Vol 10 (16) ◽  
pp. 3457
Author(s):  
Kamila Kolanska ◽  
Sofiane Bendifallah ◽  
Geoffroy Canlorbe ◽  
Arsène Mekinian ◽  
Cyril Touboul ◽  
...  

The molecular responses to hormonal stimuli in the endometrium are modulated at the transcriptional and post-transcriptional stages. Any imbalance in cellular and molecular endometrial homeostasis may lead to gynecological disorders. MicroRNAs (miRNAs) are involved in a wide variety of physiological mechanisms and their expression patterns in the endometrium are currently attracting a lot of interest. miRNA regulation could be hormone dependent. Conversely, miRNAs could regulate the action of sexual hormones. Modifications to miRNA expression in pathological situations could either be a cause or a result of the existing pathology. The complexity of miRNA actions and the diversity of signaling pathways controlled by numerous miRNAs require rigorous analysis and findings need to be interpreted with caution. Alteration of miRNA expression in women with endometriosis has been reported. Thus, a potential diagnostic test supported by a specific miRNA signature could contribute to early diagnosis and a change in the therapeutic paradigm. Similarly, specific miRNA profile signatures are expected for RIF and endometrial cancer, with direct implications for associated therapies for RIF and adjuvant therapies for endometrial cancer. Advances in targeted therapies based on the regulation of miRNA expression are under evaluation.


Genetics ◽  
1997 ◽  
Vol 145 (2) ◽  
pp. 453-465 ◽  
Author(s):  
Zhikang Li ◽  
Shannon R M Pinson ◽  
William D Park ◽  
Andrew H Paterson ◽  
James W Stansel

The genetic basis for three grain yield components of rice, 1000 kernel weight (KW), grain number per panicle (GN), and grain weight per panicle (GWP), was investigated using restriction fragment length polymorphism markers and F4 progeny testing from a cross between rice subspecies japonica (cultivar Lemont from USA) and indica (cv. Teqing from China). Following identification of 19 QTL affecting these traits, we investigated the role of epistasis in genetic control of these phenotypes. Among 63 markers distributed throughout the genome that appeared to be involved in 79 highly significant (P &lt; 0.001) interactions, most (46 or 73%) did not appear to have “main” effects on the relevant traits, but influenced the trait(s) predominantly through interactions. These results indicate that epistasis is an important genetic basis for complex traits such as yield components, especially traits of low heritability such as GN and GWP. The identification of epistatic loci is an important step toward resolution of discrepancies between quantitative trait loci mapping and classical genetic dogma, contributes to better understanding of the persistence of quantitative genetic variation in populations, and impels reconsideration of optimal mapping methodology and marker-assisted breeding strategies for improvement of complex traits.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chunmiao Jiang ◽  
Gongbo Lv ◽  
Jinxin Ge ◽  
Bin He ◽  
Zhe Zhang ◽  
...  

AbstractGATA transcription factors (TFs) are involved in the regulation of growth processes and various environmental stresses. Although GATA TFs involved in abiotic stress in plants and some fungi have been analyzed, information regarding GATA TFs in Aspergillusoryzae is extremely poor. In this study, we identified and functionally characterized seven GATA proteins from A.oryzae 3.042 genome, including a novel AoSnf5 GATA TF with 20-residue between the Cys-X2-Cys motifs which was found in Aspergillus GATA TFs for the first time. Phylogenetic analysis indicated that these seven A. oryzae GATA TFs could be classified into six subgroups. Analysis of conserved motifs demonstrated that Aspergillus GATA TFs with similar motif compositions clustered in one subgroup, suggesting that they might possess similar genetic functions, further confirming the accuracy of the phylogenetic relationship. Furthermore, the expression patterns of seven A.oryzae GATA TFs under temperature and salt stresses indicated that A. oryzae GATA TFs were mainly responsive to high temperature and high salt stress. The protein–protein interaction network of A.oryzae GATA TFs revealed certain potentially interacting proteins. The comprehensive analysis of A. oryzae GATA TFs will be beneficial for understanding their biological function and evolutionary features and provide an important starting point to further understand the role of GATA TFs in the regulation of distinct environmental conditions in A.oryzae.


Sign in / Sign up

Export Citation Format

Share Document