scholarly journals a EFFECT OF DIFFERENT ADDITIVES ON METALLIC LEAD RECOVERY FROM CRT FUNNEL GLASS USING THERMAL METHOD

2020 ◽  
Vol 20 (1) ◽  
pp. 1-11
Author(s):  
Muna K. Abbass ◽  
Abdulkaliq F. Hmood

Cathode ray tube like as electronic waste is a green crisis due to its toxicity. Remove of the lead from CRT funnel glass can prevent it from release into the environmental and allow it reuse. There are several ways to separation lead from its CRT funnel glass and then recovered from it. In this research, CRT funnel glass was treated by high thermal reduction method with using different additives. These additives that used in this method are sodium carbonate (Na2CO3 ) with (20, 25&30) wt% used as a melting agent, sodium sulfide ( Na2S) with (6, 8&10)wt% used as a catalytic agent and carbon powder (C) with (2.4, 3.6 &4.8) wt% used as a reducing agent, at fixed temperature (1100°C) and holding time (120 min). Taguchi technique for design of experiment (DOE) was applied to find the optimum process conditions of different additives for metallic lead recovery by high thermal reduction method. Experimental results presented that the maximum lead recovery was 97.36% when the optimum conditions were sodium carbonate (30%), sodium sulfide (10%), and carbon powder (3.6%) at 1100°C and 120 min.

2012 ◽  
Vol 557-559 ◽  
pp. 1539-1542
Author(s):  
Jian Fang Wang ◽  
Ya Nan Lv ◽  
Yin Long ◽  
Cheng An Tao ◽  
Hui Zhu

In this paper, the graphene oxide reducing by photochemical-thermal reduction and high-temperature thermal reduction was studied to get qualified graphene and avoid the re-aggregation. The results show that graphene obtained by both of the two reduction methods all maintained the original well-layered morphology of the graphene oxide. The graphene had smooth surface and high quality as completely reduced by high-temperature thermal method. However, the reduction the photochemical-thermal reaction was not sufficient and caused many vesicles on the graphene surface due to the low temperature and the lack of reaction time.


2015 ◽  
Vol 815 ◽  
pp. 254-262
Author(s):  
Neng Wei Wang ◽  
Guo Wei Li ◽  
Min Xian Fang

In this paper the process of direct reduction of vanadium slag was adopted. The main factor was determined by uniform experimental design and single factor analysis, and then the optimum process condition was drawn by the test. The test results showed that the regression equation curve fitting of the experiment data was very significant, the main factors affecting the vanadium slag reduction (according to the primary and secondary order) was the content of anhydrous sodium carbonate, roasting temperature, roasting time and reduction of carbon content. The factors for the reduction of the optimum process conditions are the carbon coefficient 1.04, roasting temperature 1100°C, roasting reduction time 4h, 4% mass percent of anhydrous sodium carbonate and slag. Under the optimum conditions, the actual rate of weight loss and theory rate of weight were close to 0, the results could be reproduced, and the vanadium slag metallization rate was 75%~83%.


2013 ◽  
Vol 8 (3) ◽  
pp. 155892501300800 ◽  
Author(s):  
Mitra Karimian ◽  
Hossein Hasani ◽  
Saeed Ajeli

This research investigates the effect of fiber, yarn and fabric variables on the bagging behavior of single jersey weft knitted fabrics interpreted in terms of bagging fatigue percentage. In order to estimate the optimum process conditions and to examine the individual effects of each controllable factor on a particular response, Taguchi's experimental design was used. The controllable factors considered in this research are blending ratio, yarn twist and count, fabric structure and fabric density. The findings show that fabric structure has the largest effect on the fabric bagging. Factor yarn twist is second and is followed by fabric density, blend ratio and yarn count. The optimum conditions to achieve the least bagging fatigue ratio were determined.


2014 ◽  
Vol 936 ◽  
pp. 674-680
Author(s):  
Na Zhang ◽  
Rui Xiang Yan ◽  
Wen Qiang Guan

To isolate recombinant chitinase quickly and boost its anti-fungi activities in vitro, functional magnetic nanometer carrier was used to immobilize recombinant chitinase from the crude enzyme solution and immobilized recombinant chitinase was applied to test whether it would inhibit the growth of gray mold from fruits. In this study, the carboxyl magnetic carrier was produced by solvent thermal reduction method and characterized by scanning electron microscope (SEM) and fourier transform infrared spectrometer (FTIR). Then, the carboxyl magnetic carrier activated by EDC/NHS was applied to immobilize recombinant chitinase and the immobilization efficiency was investigated by quantitative analysis. To obtain the highest immobilization efficiency, reaction conditions were optimized through combining different pH, temperature and reaction period. The results show that the surface of magnetic carrier was successfully carboxyl and the average diameter was 200nm. The immobilization efdiciency could reach the peak 64.43% after 7h reaction at the condition of pH 6 and 25°C. It also shows that immobilized recombinant chitinase can significantly inhibit the growth of gray mold isolated from table grape compared with the enzyme without immobilization with magnetic nanometer carrier.


2011 ◽  
Vol 331 ◽  
pp. 261-264 ◽  
Author(s):  
Qi Ming Zhao ◽  
Shan Yan Zhang

The auxiliary devices of ultrasonic treatment was designed and manufactured. The cotton fabric was desized using 2000L desizing enzyme with the conventional enzyme desizing process and ultrasonic enzyme desizing process respectively. Through the orthogonal experiment, the optimum process conditions of conventional enzyme desizing process and ultrasonic enzyme desizing process were determined. For the conventional enzyme desizing process, the optimized desizing conditions of cotton fabrics were: desizing enzyme dosage was 1.5g/l, temperature was 80°C, PH value was 6, and time was 60mins. The optimum process conditions of ultrasonic enzyme desizing process were: desizing enzyme dosage was 1.5g/l, temperature was 50°C, PH value was 6 and time was 45minutes. The research result indicates that, under the same desizing condition, ultrasonication can improve the desizing percentage and whiteness of cotton fabric, but the fabric strength loss increases slightly. And for the same required desizing percentage, the ultrasonic enzyme desizing process saved time and reduced the temperature of experiments compared with traditional enzyme desizing process


2021 ◽  
Author(s):  
Xiaoping Chen ◽  
Jiaqi Fu ◽  
Jiangang Li ◽  
Bohong Chen ◽  
Lei Yang ◽  
...  

In this work, submicron copper powder with narrow particle distribution was synthesized via a simple methanol thermal reduction method without using any surfactants. Smaller copper powder with narrower particle size...


RSC Advances ◽  
2017 ◽  
Vol 7 (69) ◽  
pp. 43831-43838 ◽  
Author(s):  
Hai Pan ◽  
Mingzhen Xu ◽  
Qing Qi ◽  
Xiaobo Liu

A lightweight absorber with an ordered sandwich-like structure was fabricated using a simple one-pot solvent-thermal method and thermal reduction process.


Sign in / Sign up

Export Citation Format

Share Document