scholarly journals An Investigation Of The Performance Of District Heating Substations Using Computer Simulation

2021 ◽  
Author(s):  
Edmund Wong

Low primary temperature drop across district heating substations is an undesirable phenomenon observed in the district heating industry. Professionals in the industry have argued that this is caused by inappropriate sizing and controls of district heating substations. The thesis aims to investigate the impact of design and operation parameters on the performance of district heating substations, so that building designers and engineers can potentially better design and operate new and existing district heating substations. The thesis shows that, by developing and using a physical model as a computational tool for sensitivity analysis, different design and operation parameters can be evaluated. This generates insights for energy conserving control strategies to be developed. A preliminary control strategy was proposed for district heating substations, and simulation results show energy saving potentials.

2021 ◽  
Author(s):  
Edmund Wong

Low primary temperature drop across district heating substations is an undesirable phenomenon observed in the district heating industry. Professionals in the industry have argued that this is caused by inappropriate sizing and controls of district heating substations. The thesis aims to investigate the impact of design and operation parameters on the performance of district heating substations, so that building designers and engineers can potentially better design and operate new and existing district heating substations. The thesis shows that, by developing and using a physical model as a computational tool for sensitivity analysis, different design and operation parameters can be evaluated. This generates insights for energy conserving control strategies to be developed. A preliminary control strategy was proposed for district heating substations, and simulation results show energy saving potentials.


2013 ◽  
Vol 372 ◽  
pp. 538-542
Author(s):  
Guo Zhong Jia ◽  
Xin Ping Wu ◽  
Zhen Hua Jia

According to the special structure of DCT, the control strategy of launch with two clutches has been proposed to share the friction work and extend the life of both clutches. The dynamic model of launch with two clutches and the clutch control model have been built. the control strategies of both clutches have been proposed respectively according to the requirement of the different driver intention and the limitation of the impact of vehicle. The simulation model of launch with two clutches has been built using the Matlab/Simulink platform, and the simulation has been carried out. The Simulation results show that the balance of friction work based on this launch strategy with two clutches has been validated.


2020 ◽  
Vol 137 (8) ◽  
pp. 394-399
Author(s):  
Stefan Polster ◽  
Herwig Renner ◽  
Katrin Friedl ◽  
Olof Samuelsson

AbstractThis paper proposes an advanced emergency control strategy for embedded VSC-HVDC links after AC disturbances, such as line tripping and generation loss. The control goals are to minimize the impact of the disturbance on the AC-network, which includes improving the long-term voltage stability with utilizing possible unloading capacity of parallel AC elements. The proposed algorithm is evaluated against other control strategies for embedded VSC-HVDC links by applying it to a simple demonstration network. The test system includes all necessary VSC converter dynamics, the VSC-HVDC link current and voltage limits and simple load recovery characteristics for an evaluation of the long term voltage stability. The simulation results are explained and the advantages of the proposed emergency control strategy are discussed.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Vikash Gurugubelli ◽  
Arnab Ghosh

Purpose The share of renewable energy sources (RESs) in the power system is increasing day by day. The RESs are intermittent, therefore maintaining the grid stability and power balance is very difficult. The purpose of this paper is to control the inverters in microgrid using different control strategies to maintain the system stability and power balance. Design/methodology/approach In this paper, different control strategies are implemented to the voltage source converter (VSC) to get the desired performance. The DQ control is a basic control strategy that is inherently present in the droop and virtual synchronous machine (VSM) control strategies. The droop and VSM control strategies are inspired by the conventional synchronous machine (SM). The main objective of this work is to design and implement the three aforementioned control strategies in microgrid. Findings The significant contributions of this work are: the detailed implementation of DQ control, droop control and VSM control strategies for VSC in both grid-connected mode and standalone mode is presented; the MATLAB/Simulink simulation results and comparative studies of the three aforementioned controllers are introduced first time in the proposed work; and the opal-RT digital real-time simulation results of the proposed VSM control show the superiority in transient response compared to the droop control strategy. Research limitations/implications In the power system, the power electronic-based power allowed by VSM is dominated by the conventional power which is generated from the traditional SM, and then the issues related to stability still need advance study. There are some differences between the SM and VSM characteristics, so the integration of VSM with the existing system still needs further study. Economical operation of VSM with hybrid storage is also one of the future scopes of this work. Originality/value The significant contributions of this work are: the detailed implementation of DQ control, droop control and VSM control strategies for VSC in both grid-connected mode and standalone mode is presented; the MATLAB/Simulink simulation results and comparative studies of the three aforementioned controllers are introduced first time in the proposed work; and the opal-RT digital real-time simulation results of the proposed VSM control show the superiority in transient response compared to the droop control strategy.


Author(s):  
Jikai Liu ◽  
Biao Ma ◽  
Heyan Li ◽  
Man Chen ◽  
Jianwen Chen

The cooperation mode between the engagement and disengagement clutches for vehicles equipped with Dual Clutch Transmission (DCT) is of vital importance to achieve a smooth gearshift, in particular for the downshift process as its unavoidable power interruption during the inertia phase. Hence, to elevate the performance of DCT downshifting process, an analytical model and experimental validation for the analysis, simulation and control strategy are presented. Optimized pressure profiles applied on two clutches are obtained based on the detailed analysis of downshifting process. Then, according to the analysis results, a novel control strategy that can achieve downshift task with only one clutch slippage is proposed. The system model is established on Matlab/Simulink platform and used to study the variation of output torque and speed in response to different charging pressure profiles and various external loads during downshifting process. Simulation results show that, compared with conventional control strategies, the proposed one can not only avoid the torque hole and power circulation, but shorten the shift time and reduce the friction work. Furthermore, to validate the effectiveness of the control strategy, the bench test equipped with DCT is conducted and the experiment results show a good agreement with the simulation results.


2013 ◽  
Vol 380-384 ◽  
pp. 2962-2966
Author(s):  
Chun Guang Tian ◽  
De Xin Li ◽  
Li Xia Cai ◽  
Tian Dong ◽  
Xiao Juan Han

As one of main clean energies, wind power has been developed fast, but the fluctuations of active power at a wind farm is a huge challenge for the grid system, thus it is essential for wind farm connected into grid to detection the active power. This paper studied control strategies and detection methods of the active power at a wind farm. Simulation results showed the effective detection of active power at a wind farm can improve the characteristics of the grid and the ability of wind farm to regulate the grid and increase the scheduled ability of wind farm.


Author(s):  
Atokolo William ◽  
Akpa Johnson ◽  
Daniel Musa Alih ◽  
Olayemi Kehinde Samuel ◽  
C. E. Mbah Godwin

This work is aimed at formulating a mathematical model for the control of zika virus infection using Sterile Insect Technology (SIT). The model is extended to incorporate optimal control strategy by introducing three control measures. The optimal control is aimed at minimizing the number of Exposed human, Infected human and the total number of Mosquitoes in a population and as such reducing contacts between mosquitoes and human, human to human and above all, eliminates the population of Mosquitoes. The Pontryagin’s maximum principle was used to obtain the necessary conditions, find the optimality system of our model and to obtain solution to the control problem. Numerical simulations result shows that; reduction in the number of Exposed human population, Infected human population and reduction in the entire population of Mosquito population is best achieved using the optimal control strategy.


2020 ◽  
Vol 185 ◽  
pp. 01060
Author(s):  
Huanruo Qi ◽  
Ningkang Zheng ◽  
Xiangyang Yan ◽  
Yilong Kang

Two control strategies of DFIG under grid distortion are firstly summarized, namely, the control strategy of PI-R current controller based on dq reference frame and the control strategy of PI current controller based on the multiple rotating dq reference frame, and their advantages and disadvantages are analysed. On the basis of dynamic modelling of DFIG under grid distortion, in view of the defect that DFIG coupling is not considered in the control strategy of PI-R current controller based on dq reference frame, an improved control strategy considering motor coupling is proposed. In the end, the modelling and simulation of the unimproved and improved control strategies of PI-R current controller based on dq reference frame are carried out, and the simulation results verified the effectiveness of the improved control strategy.


2020 ◽  
Vol 10 (14) ◽  
pp. 4748 ◽  
Author(s):  
A. Ruiz-García ◽  
I. Nuez

Although reverse osmosis (RO) is the technology of choice for solving water shortage problems, it is a process that consumes large amounts of energy. Brackish water (BW) desalination is more efficient than seawater desalination due to the lower salinity of the feedwater source. This makes coupling renewable energy sources with BWRO systems attractive. The operation of this type of systems is complex and requires the design of control strategies to obtain optimal operation. The novelty of this work was to propose a simple on-off control strategy for operating a BWRO system that can work with one and two stages and with different configurations considering six spiral wound membrane elements per pressure vessel (PV). The feedwater quality variations of a real groundwater well were used together with a computational tool to simulate the response of the different configurations with the purpose of selecting the most appropriate depending on the input power to the BWRO system. The most suitable configurations were found to be 1:0, 2:1 and 3:2 (PV first stage:PV second stage). It was additionally found that increased feedwater concentrations resulted in shorter operating ranges to maximize permeate water production for the 1:0 and 2:1 configurations, and that the 3:2 configuration was the most suitable for most of the operating range.


2014 ◽  
Vol 643 ◽  
pp. 42-47 ◽  
Author(s):  
Yan Xiao Fu ◽  
Liang Yi Cui ◽  
Xiang Yang Xu ◽  
Peng Dong

Basing on the fact that requirements for shift quality in automatic transmissions have been increasing rapidly necessitates the establishment of a suitable shifting control strategy in order to facilitate smoothness of different processes, this paper introduces a simulation model of an 8-speed automatic transmission for front-drive vehicles with respect to detailed shifting strategies and relative parameters. The transmitted torque of the oncoming shift elements before synchronization point can be reduced by an impact function in order to damp the impact and thus make the gear shifting process more smooth. This paper makes a systematic introduction of the structure of 8AT, theoretical basis of control strategy, the establishment of the simulation model and the comparison between test results and simulation results. The conclusion shows that with an accurate dynamic model, simulation results and test results are neighborhood data, the simulation model can be used to help realizing the ultimate goal of better shift quality with higher efficiency, lower shift loads and improved shifting comfort.


Sign in / Sign up

Export Citation Format

Share Document