scholarly journals Performance characteristics of different mineral filler in asphalt concrete mixtures

2021 ◽  
Author(s):  
Calvin Fong

With the increase of traffic load in Canada, asphalt mixtures are required to sustain heavier loads and withstand the harsh Canadian winter. This requires careful design and material selection. This study evaluates the performance of different types of mineral filler in asphalt pavements. Five 19mm Superpave mixes were tested with four types of mineral filler namely fly ash (Class C and Class F). Blast Furnace Slag and General Use Portland cement along with a control mix with limestone dust. The results showed that, Class C fly ash generated the most economical mix by reducing 0.3% asphalt content of total mix. The indirect tensile strength (ITS) and tensile strength ration (TSR) test results were used to evaluate the effects of different fillers for water susceptibility. Both types of fly ashes have excellent results on Tensile Strength Ratio (TSR) which increase resistance to water susceptibility. These mixes have a very positive effect on stripping resistance. Improvements in binder properties were shown after short and long term aging which was attributable to the reduction of oxidation and aging effect. Binder with fly ash has the best rutting and fatigue resistance out of all tested binder samples.

2021 ◽  
Author(s):  
Calvin Fong

With the increase of traffic load in Canada, asphalt mixtures are required to sustain heavier loads and withstand the harsh Canadian winter. This requires careful design and material selection. This study evaluates the performance of different types of mineral filler in asphalt pavements. Five 19mm Superpave mixes were tested with four types of mineral filler namely fly ash (Class C and Class F). Blast Furnace Slag and General Use Portland cement along with a control mix with limestone dust. The results showed that, Class C fly ash generated the most economical mix by reducing 0.3% asphalt content of total mix. The indirect tensile strength (ITS) and tensile strength ration (TSR) test results were used to evaluate the effects of different fillers for water susceptibility. Both types of fly ashes have excellent results on Tensile Strength Ratio (TSR) which increase resistance to water susceptibility. These mixes have a very positive effect on stripping resistance. Improvements in binder properties were shown after short and long term aging which was attributable to the reduction of oxidation and aging effect. Binder with fly ash has the best rutting and fatigue resistance out of all tested binder samples.


2019 ◽  
Vol 276 ◽  
pp. 01014
Author(s):  
I Made Alit Karyawan Salain ◽  
I Nyoman Sutarja ◽  
Teguh Arifmawan Sudhiarta

This experimental study presents the properties of highperformance concrete (HPC) made by partially replacing type I Portland cement (OPC) with class C fly ash (CFA). The purpose of this study is to examine, with hydration time, the development of the compressive strength, the splitting tensile strength and the permeability of HPC utilizing different quantity of CFA. Four HPC mixtures, C1, C2, C3, and C4, were made by utilizing respectively 10%, 20%, 30% and 40% of CFA as replacement of OPC, by weight. One control mixture, C0, was made with 0% CFA. The mix proportion of HPC was 1.00 binder: 1.67 fine aggregate: 2.15 coarse aggregate with water to binder ratio 0.32. In each mixture, it was added 5% silica fume and 0.6% superplasticizer of the weight of the binder. Tests of HPC properties were realized at the age of 1, 3, 7, 28, and 90 days. The results indicate that CFA used to partially replace OPC in HPC shows adequate cementitious and pozzolanic properties. The compressive strength and the splitting tensile strength of HPC increase while the permeability coefficient decreases with increasing hydration time. It is found that the optimum replacement of OPC with CFA is 10%, however the replacement up to 20% is still acceptable to produce HPC having practically similar harden properties with control mixture. At this optimum replacement and after 90 days of hydration, the compressive strength, the splitting tensile strength and the permeability coefficient can reach 68.9 MPa, 8.3 MPa and 4.6 E-11 cm/sec respectively. These results are 109%, 101%, and 48% respectively of those of control mixture.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 875
Author(s):  
Chenchen Luan ◽  
Qingyuan Wang ◽  
Fuhua Yang ◽  
Kuanyu Zhang ◽  
Nodir Utashev ◽  
...  

There have been a few attempts to develop prediction models of splitting tensile strength and reinforcement-concrete bond strength of FAGC (low-calcium fly ash geopolymer concrete), however, no model can be used as a design equation. Therefore, this paper aimed to provide practical prediction models. Using 115 test results for splitting tensile strength and 147 test results for bond strength from experiments and previous literature, considering the effect of size and shape on strength and structural factors on bond strength, this paper developed and verified updated prediction models and the 90% prediction intervals by regression analysis. The models can be used as design equations and applied for estimating the cracking behaviors and calculating the design anchorage length of reinforced FAGC beams. The strength models of PCC (Portland cement concrete) overestimate the splitting tensile strength and reinforcement-concrete bond strength of FAGC, so PCC’s models are not recommended as the design equations.


2007 ◽  
Vol 336-338 ◽  
pp. 1203-1206 ◽  
Author(s):  
Metin Gürü ◽  
M. Korçak ◽  
Süleyman Tekeli ◽  
Ahmet Güral

The properties of ceramic-metal (Cermet) composites as tensile strength, hardness and resistance to corrosion and high temperature are superior than ceramics and metals. Because of the enhanced characteristics of cermets, they are commonly used in various applications and industries. The main objective of this study is to produce a cheap, easy produced, strong and high corrosion resistant composite material. For these purposes, zinc is used for its natural capacity against corrosion, low density, low melting point and softness. Magnesium aluminates spinel oxide (MgAl2O4) is chosen because of its high melting point and low density. Fly ash is a waste from coal power plant having puzzolanic properties. In this study, the effect of various amounts of zinc and fly ash addition on density and hardness behaviour of zinc-based MgAl2O4 composites was investigated. The experimental results showed that zinc and fly ash addition improved the hardness behavior of zincbased MgAl2O4 composite.


2021 ◽  
Vol 904 ◽  
pp. 413-418
Author(s):  
Wilasinee Kingkam ◽  
Sasikarn Nuchdang ◽  
Dussadee Rattanaphra

Coal fly ash (CFA) and bottom ash (BA) obtained from coal fired power plants in Thailand and local supplier were characterized using XRF, XRD and N2 adsorption-desorption techniques. Their possibilities for conversion of palm oil into biodiesel were investigated. Selected CFA was also modified with lanthanum (La) at different La loading and the influence of La loading on biodiesel conversion was evaluated. The resulted showed that the Class C CFA as contained large amount of CaO (free lime) could catalyze the transesterification to achieve the highest FAME content of 89% under the operation conditions; the reaction temperature of 200 °C, the reaction pressure of 39 bars, the catalyst loading of 5 wt% of oil, the molar of oil to methanol of 1:30 and the stirring speed of 600 rpm for 5 h. The addition of La on the Class C CFA had a negative effect on conversion of palm oil. The FAME content decreased gradually from 89 to 62% with increasing La loading from 0 to 1 wt%.


Sign in / Sign up

Export Citation Format

Share Document