Study of tip clearance model effects on computational simulation costs for NASA rotor 37.

2021 ◽  
Author(s):  
Parthasarathy Rajarathinam Jayachandran

The computational time and resources required to calculate an accurate solution is the key concern in the field of CFD. Especially in the CFD analysis of turbomachines many simulations are required to validate the CFD code and to predict the performance of the turbomachines. In this thesis, the typical computational domain was remodelled and the best computational settings were identified to compute the flows. By modifying the numerical domain, improved grid distribution with less number of nodes was achieved and the results predicted were within the limits specified by NASA for the validation of CFD codes. The modified model with the best computational settings required 28.3% less computational time and 20.5% less computer memory than the typical model and baseline methods.

2021 ◽  
Author(s):  
Parthasarathy Rajarathinam Jayachandran

The computational time and resources required to calculate an accurate solution is the key concern in the field of CFD. Especially in the CFD analysis of turbomachines many simulations are required to validate the CFD code and to predict the performance of the turbomachines. In this thesis, the typical computational domain was remodelled and the best computational settings were identified to compute the flows. By modifying the numerical domain, improved grid distribution with less number of nodes was achieved and the results predicted were within the limits specified by NASA for the validation of CFD codes. The modified model with the best computational settings required 28.3% less computational time and 20.5% less computer memory than the typical model and baseline methods.


2021 ◽  
Author(s):  
Daniel Ferreira Corrêa Barbosa ◽  
Daniel da Silva Tonon ◽  
Luiz Henrique Lindquist Whitacker ◽  
Jesuino Takachi Tomita ◽  
Cleverson Bringhenti

Abstract The aim of this work is an evaluation of different turbulence models applied in Computational Fluid Dynamics (CFD) techniques in the turbomachinery area, in this case, in an axial turbine stage used in turbopump (TP) application. The tip clearance region was considered in this study because it has a high influence in turbomachinery performance. In this region, due to its geometry and the relative movement between the rotor row and casing, there are losses associated with vortices and secondary flow making the flowfield even more turbulent and complex. Moreover, the flow that leaks in the tip region does not participate in the energy transfer between the fluid and rotor blades, degradating the machine efficiency and performance. In this work, the usual flat tip rotor blade geometry was considered. The modeling of turbulent flow based on Reynolds Averaged Navier-Stokes (RANS) equations predicts the variation of turbine operational characteristics that is sufficient for the present turbomachine and flow analysis. Therefore, the appropriate choice of the turbulence model for the study of a given flow is essential to obtain adequate results using numerical approximations. This comparison become important due to the fact that there is no general turbulence model for all engineering applications that has fluid and flow. The turbomachine considered in the present work, is the first stage of the hydraulic axial turbine used in the Low Pressure Oxidizer Turbopump (LPOTP) of the Space Shuttle Main Engine (SSME), considering the 3.0% tip clearance configuration relative to rotor blade height. The turbulence models evaluated in this work were the SST (Shear Stress Transport), the k-ε Standard and the k-ε RNG. The computational domain was discretized in several control volumes based on unstructured mesh. All the simulations were performed using the commercial software developed by ANSYS, CFX v15.0 (ANSYS). All numerical settings and how the boundary conditions were imposed at different surfaces are explained in the work. The boundary conditions settings follow the same rule used in the test facility and needs some attention during the simulations to vary the Blade-Jet-Speed ratio parameter adequately. The results from numerical simulations, were synthesized and compared with the experimental data published by National Aeronautics and Space Administration (NASA), in which the turbine efficiency and its jet velocity parameter are analyzed for each turbulence model result. The work fluid considered in this work was water, the same fluid used in the NASA test facility.


Geophysics ◽  
2021 ◽  
pp. 1-77
Author(s):  
Danyelle da Silva ◽  
Edwin Fagua Duarte ◽  
Wagner Almeida ◽  
Mauro Ferreira ◽  
Francisco Alirio Moura ◽  
...  

We have designed a target-oriented methodology to perform Full Waveform Inversion using a frequency-domain wave propagator based on the so-called Patched Green’s Function (PGF) technique. Originally developed in condensed matter physics to describe electronic waves in materials, the PGF technique is easily adaptable to the case of wave propagation in a spatially variable media in general. By dividing the entire computational domain into two sections, namely the target area and the outside target area, we calculate the Green Functions related to each section separately. The calculations related to the section outside the target are performed only once at the beginning of inversion, whereas the calculations in the target area are performed repeatedly for each iteration of the inversion process. With the Green Functions of the separate areas, we calculate the Green Functions of the two systems patched together through the application of a Recursive Dyson equation. By performing 2D and time-lapse experiments on the Marmousi model and a Brazilian Pre-salt velocity model, we demonstrate that the target-oriented PGF reduces the computational time of the inversion without compromising accuracy. In fact, when compared with conventional FWI results, the PGF-based calculations are identical but done in a fraction of the time.


Author(s):  
Thomas Hauptmann ◽  
Christopher E. Meinzer ◽  
Joerg R. Seume

Depending on the in service condition of jet engines, turbine blades may have to be replaced, refurbished, or repaired in the course of an engine overhaul. Thus, significant changes of the turbine blade geometry can be introduced due to regeneration and overhaul processes. Such geometric variances can affect the aerodynamic and aeroelastic behavior of turbine blades. One goal in the development of the regeneration process is to estimate the aerodynamic excitation of turbine blades depending on these geometric variances caused during the regeneration. Therefore, this study presents an experimentally validated comparison of two methods for the prediction of forced response in a multistage axial turbine. Two unidirectional fluid structure interaction (FSI) methods, a time-linearized and a time-accurate with a subsequent linear harmonic analysis, are employed and the results validated against experimental data. The results show that the vibration amplitude of the time-linearized method is in good agreement with the experimental data and, also requires lower computational time than the time-accurate FSI. Based on this result, the time-linearized method is used to perform a sensitivity study of the tip clearance size of the last rotor blade row of the five stage axial turbine. The results show that an increasing tip clearances size causes an up to 1.35 higher vibration amplitude compared to the reference case, due to increased forcing and decreased damping work.


Author(s):  
Dong-Il Kim ◽  
Ki-So Bok ◽  
Han-Bae Lee

To seek the fan operating point on a cooling system with fans, it is very important to determine the system impedance curve and it has been usually examined with the fan tester based on ASHRAE standard and AMCA standard. This leads to a large investment in time and cost, because it could not be executed until the system is made actually. Therefore it is necessary to predict the system impedance curve through numerical analysis so that we could reduce the measurement time and effort. This paper presents how the system impedance curve (pressure drop curve) is computed by CFD in substitute for experiment. In reverse order to the experimental principle of the fan tester, pressure difference was adopted first as inlet and outlet boundary conditions of the system and then flow rate was calculated. After determining the system impedance curve, it was compared with experimental results. Also the computational domain of the system was investigated to minimize computational time.


Author(s):  
J. J. Adamczyk ◽  
M. L. Celestina ◽  
E. M. Greitzer

A numerical experiment has been carried out to define the near stall casing endwall flow field of a high-speed fan rotor. The experiment used a simulation code incorporating a simple clearance model, whose calibration is presented. The results of the simulation show that the interaction of the tip leakage vortex and the in-passage shock plays a major role in determining the fan flow range. More specifically, the computations imply that it is the area increase of this vortex as it passes through the in-passage shock, which is the source of the blockage associated with stall. In addition, for fans of this type, it is the clearance over the forward portion of the fan blade which controls the flow processes leading to stall.


Author(s):  
Yun Zheng ◽  
Xiubo Jin ◽  
Hui Yang ◽  
Qingzhe Gao ◽  
Kang Xu

Abstract The numerical study is performed by means of an in-house CFD code to investigate the effect of circumferential nonuniform tip clearance due to the casing ovalization on flow field and performance of a turbine stage. A method called fast-moving mesh is used to synchronize the non-circular computational domain with the rotation of the rotor row. Four different layouts of the circumferential nonuniform clearance are calculated and evaluated in this paper. The results show that, the circumferential nonuniform clearance could reduce the aerodynamic performance of the turbine. When the circumferential nonuniformity δ reaches 0.4, the aerodynamic efficiency decreases by 0.58 percentage points. Through the analysis of the flow field, it is found that the casing ovalization leads to the difference of the size of the tip clearance in the circumferential direction, and the aerodynamic loss of the position of large tip clearance is greater than that of small tip clearance, which is related to the scale of leakage vortex. In addition, the flow field will become nonuniform in the circumferential direction, especially at the rotor exit, which will adversely affect the downstream flow field.


Author(s):  
Srinibas Tripathy ◽  
Sridhar Sahoo ◽  
Dhananjay Kumar Srivastava

Computational fluid dynamics (CFD) plays a tremendous role in evaluating and visualizing the spray breakup, atomization and vaporization process. In this study, ANSYS Forte CFD tool was used to simulate the spray penetration length and spray morphology in a constant volume chamber at different grid size of a multi-hole injector. An unsteady gas jet model was coupled with Kelvin-Helmholtz (KH) and Rayleigh-Taylor (RT) model for multi-hole spray simulation. The effect of CFD cell size and ambient gas pressure on spray penetration length and spray morphology of fuel vapor mass fraction were investigated for both KH-RT and KH-RT with the unsteady gas jet model. It is found that KH-RT with the unsteady gas jet model shows mesh independent spray penetration length and spray morphology of fuel vapor mass fraction as compared to KH-RT model. This can be explained by the Lagrangian-Eulerian coupling of axial droplet-gas relative velocity is modeled on the principle of unsteady gas jet theory instead of discretizing very fine grid to the computational domain. This reduces the requirement of fine mesh near the nozzle and allows larger time step during spray injection. It is also observed that at higher ambient gas pressure, an aerodynamic force between the droplet and gas intensifies which reduces the overall spray penetration length and fuel vapor mass. The distorted spray morphology of fuel vapor mass fraction was accurately predicted at high ambient gas pressure using the KH-RT with an unsteady gas jet model which results in mesh independent drag predictions. The use of advanced spray model results in the mesh size dependency reduction and accurate drag prediction with less computational time and faster accurate solutions over all conventional spray breakup models.


Author(s):  
Sunil Patil ◽  
Danesh Tafti

Large eddy simulations of swirling flow and the associated convective heat transfer in a gas turbine can combustor under cold flow conditions for Reynolds numbers of 50,000 and 80,000 with a characteristic Swirl number of 0.7 are carried out. A precursor Reynolds averaged Navier-Stokes (RANS) simulation is used to provide the inlet boundary conditions to the large-eddy simulation (LES) computational domain, which includes only the can combustor. A stochastic procedure based on the classical view of turbulence as a superposition of the coherent structures is used to simulate the turbulence at the inlet plane of the computational domain using the mean flow velocity and Reynolds stress data from the precursor RANS simulation. To further reduce the overall computational resource requirement and the total computational time, the near wall region is modeled using a zonal two layer model (WMLES). A novel formulation in the generalized co-ordinate system is used for the solution of effective tangential velocity and temperature in the inner layer virtual mesh. The WMLES predictions are compared with the experimental data of Patil et al. (2011, “Experimental and Numerical Investigation of Convective Heat Transfer in Gas Turbine Can Combustor,” ASME J. Turbomach., 133(1), p. 011028) for the local heat transfer distribution on the combustor liner wall obtained using robust infrared thermography technique. The heat transfer coefficient distribution on the liner wall predicted from the WMLES is in good agreement with experimental values. The location and the magnitude of the peak heat transfer are predicted in very close agreement with the experiments.


Author(s):  
Stefano Tiribuzi

ENEL operates a dozen combined cycle units whose V94.3A gas turbines are equipped with annular combustors. In such lean premixed gas turbines, particular operation conditions could trigger large pressure oscillations due to thermoacoustic instabilities. The ENEL Research unit is studying this phenomenon in order to find out methods which could avoid or mitigate such events. The use of effective numerical analysis techniques allowed us to investigate the realistic time evolution and behaviour of the acoustic fields associated with this phenomenon. KIEN, an in-house low diffusive URANS code capable of simulating 3D reactive flows, has been used in the Very Rough Grid approach. This approach permits the simulation, with a reasonable computational time, of quite long real transients with a computational domain extended over all the resonant volumes involved in the acoustic phenomenon. The V94.3A gas turbine model was set up with a full combustor 3D grid, going from the compressor outlet up to the turbine inlet, including both the annular plenum and the annular combustion chamber. The grid extends over the entire circular angle, including all the 24 premixed burners. Numerical runs were performed with the normal V94.3A combustor configuration, with input parameters set so as no oscillations develop in the standard ambient conditions. Wide pressure oscillations on the contrary are associated with the circumferential acoustic modes of the combustor, which have their onset and grow when winter ambient conditions are assumed. These results also confirmed that the sustaining mechanism is based on the equivalence ratio fluctuation of premix mixture and that plenum plays an important role in such mechanism. Based on these findings, a system for controlling the thermoacoustic oscillation has been conceived (Patent Pending), which acts on the plenum side of the combustor. This system, called SCAP (Segmentation of Combustor Annular Plenum), is based on the subdivision of the plenum annular volume by means of a few meridionally oriented walls. Repetition of KIEN runs with a SCAP configuration, in which a suitable number of segmentation walls were properly arranged in the annular plenum, demonstrated the effectiveness of this solution in preventing the development of wide thermoacoustic oscillations in the combustor.


Sign in / Sign up

Export Citation Format

Share Document