scholarly journals Experimental investigations into fluid-structure interactions between a cantilever beam and axially flowing water at different mass flow rates

2021 ◽  
Author(s):  
Bryan Hudson

This thesis presents an experimental investigation into the response of a cantilever beam experiencing axial flow induced vibrations with the free boundary condition at upstream. The acceleration of the beam was captured at two locations using MEMS based accelerometers. The experimental results were compared with known characteristics of each of the three types of responses known to result from flow induced vibrations in axial flow. The observed phenomena can be classified as non-resonant buffeting response driven by the turbulent flow of the fluid.

2021 ◽  
Author(s):  
Bryan Hudson

This thesis presents an experimental investigation into the response of a cantilever beam experiencing axial flow induced vibrations with the free boundary condition at upstream. The acceleration of the beam was captured at two locations using MEMS based accelerometers. The experimental results were compared with known characteristics of each of the three types of responses known to result from flow induced vibrations in axial flow. The observed phenomena can be classified as non-resonant buffeting response driven by the turbulent flow of the fluid.


Author(s):  
Fan Lin ◽  
Fangfei Ning ◽  
Huoxing Liu

This paper presents both experimental and unsteady RANS investigations of a slot-type casing treatment at a transonic axial flow compressor rotor. Experimental results show that at 60% and 98% of rotor design wheel speeds, approximately 100% and 200% extra extensions of the rotor operation ranges are achieved, respectively. On the other hand, there are about 3.6% and 2.0% drops of efficiencies at 60% and 98% speeds respectively if comparisons are made at the same peak-efficiency mass flow rates of the solid casing case. If comparing the respective peak efficiencies for the solid casing case with those for the treated casing case, there are still about 3.4% and 0.7% drops at 60% and 98% speeds, respectively. As for the unsteady RANS study, an in-house unsteady RANS code has been used to study the casing treatment flow at several operating points, i.e., the peak efficiency and the near stall with regard to the solid casing case at 60% speed and 98% speed, respectively. It is shown that the interactions between the blade passage flow and the casing treatment flow exhibit different manner at two rotating speeds. The flow condition in which the rotor operates, i.e., either the subsonic condition at the 60% speed or the transonic condition with passage shock presented at the 98% speed, is one of the determinate factors that are responsible for the manner the casing treatment works. The loss production due to casing treatment is also particularly discussed.


Author(s):  
Masoud Darbandi ◽  
Pouyan Farzinpour

This Paper presents simulation of Electroosmotic phenomenon in a capillary using an extended hybrid finite-volume-element method. Most of the last electroosmotic phenomenon studies in microchannels do not take into consideration the effect of reservoirs and pressure drops occurred at the inlet and outlet of the microchannel. This neglect may lead to a few drawbacks. For example, the incorrect pressure drops can significantly alter the flow patterns and mass flow rates in microchannels. As a remedy the use of reservoirs at the two ends of a microchannel has been recently practiced as a novel strategy to overcome this drawback. However, this remedy needs careful attention because the resulting solutions need to be independent of the reservoirs’ sizes. In this paper, we introduce a novel geometry and new boundary conditions, which resolves the difficulties encountered with inserting the reservoirs at the two ends of a microchannel. The results of applying the new geometry and implementing the new boundary conditions are satisfactory. Therefore, using the outcomes of this paper, the real simulation of electroosmotic field is possible.


Author(s):  
E. Charlaix ◽  
L. Bocquet

The boundary condition (B.C.) for hydrodynamic flows at solid surfaces is usually assumed to be that of no slip. However a number of molecular simulations and experimental investigations over the last two decades have demonstrated violations of the no-slip B.C., leading to hydrodynamic slippage at solid surfaces. In this short review, we explore the molecular mechanisms leading to hydrodynamic slippage of water at various surfaces and discuss experimental investigations allowing us to measure the so-called slip length


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Tobias Blanke ◽  
Markus Hagenkamp ◽  
Bernd Döring ◽  
Joachim Göttsche ◽  
Vitali Reger ◽  
...  

AbstractPrevious studies optimized the dimensions of coaxial heat exchangers using constant mass flow rates as a boundary condition. They show a thermal optimal circular ring width of nearly zero. Hydraulically optimal is an inner to outer pipe radius ratio of 0.65 for turbulent and 0.68 for laminar flow types. In contrast, in this study, flow conditions in the circular ring are kept constant (a set of fixed Reynolds numbers) during optimization. This approach ensures fixed flow conditions and prevents inappropriately high or low mass flow rates. The optimization is carried out for three objectives: Maximum energy gain, minimum hydraulic effort and eventually optimum net-exergy balance. The optimization changes the inner pipe radius and mass flow rate but not the Reynolds number of the circular ring. The thermal calculations base on Hellström’s borehole resistance and the hydraulic optimization on individually calculated linear loss of head coefficients. Increasing the inner pipe radius results in decreased hydraulic losses in the inner pipe but increased losses in the circular ring. The net-exergy difference is a key performance indicator and combines thermal and hydraulic calculations. It is the difference between thermal exergy flux and hydraulic effort. The Reynolds number in the circular ring is instead of the mass flow rate constant during all optimizations. The result from a thermal perspective is an optimal width of the circular ring of nearly zero. The hydraulically optimal inner pipe radius is 54% of the outer pipe radius for laminar flow and 60% for turbulent flow scenarios. Net-exergetic optimization shows a predominant influence of hydraulic losses, especially for small temperature gains. The exact result depends on the earth’s thermal properties and the flow type. Conclusively, coaxial geothermal probes’ design should focus on the hydraulic optimum and take the thermal optimum as a secondary criterion due to the dominating hydraulics.


Author(s):  
Stefan Schmid ◽  
Rudi Kulenovic ◽  
Eckart Laurien

For the validation of empirical models to calculate leakage flow rates in through-wall cracks of piping, reliable experimental data are essential. In this context, the Leakage Flow (LF) test rig was built up at the IKE for measurements of leakage flow rates with reduced pressure (maximum 1 MPA) and temperature (maximum 170 °C) compared to real plant conditions. The design of the test rig enables experimental investigations of through-wall cracks with different geometries and orientations by means of circular blank sheets with integrated cracks which are installed in the tubular test section of the test rig. In the paper, the experimental LF set-up and used measurement techniques are explained in detail. Furthermore, first leakage flow measurement results for one through-wall crack geometry and different imposed fluid pressures at ambient temperature conditions are presented and discussed. As an additional aspect the experimental data are used for the determination of the flow resistance of the investigated leak channel. Finally, the experimental results are compared with numerical results of WinLeck calculations to prove specifically in WinLeck implemented numerical models.


Sign in / Sign up

Export Citation Format

Share Document