scholarly journals Endocrinology of thermoregulation in birds in a changing climate

Author(s):  
Suvi Ruuskanen ◽  
Bin-Yan Hsu ◽  
Andreas Nord

The ability to maintain a (relatively) stable body temperature in a wide range of thermal environments is a unique feature of endotherms such as birds. Endothermy is acquired and regulated via various endocrine and molecular pathways, and ultimately allows wide aerial, aquatic, and terrestrial distribution in variable environments. However, due to our changing climate, birds are faced with potential new challenges for thermoregulation, such as more frequent extreme weather events, lower predictability of climate, and increasing mean temperature. We provide a compact overview on thermoregulation in birds and its endocrine and molecular mechanisms, pinpointing gaps in current knowledge and recent developments, focusing especially on non-model species to understand the generality of, and variation in, mechanisms. We highlight plasticity in thermoregulation and underlying endocrine regulation, because thorough understanding of plasticity is key to predicting responses to changing environmental conditions. To this end, we discuss how changing climate is likely to affect avian thermoregulation and associated endocrine traits, and how the interplay between these physiological processes may play a role in facilitating or constraining adaptation to a changing climate. We conclude that while the general patterns of endocrine regulation of thermogenesis are quite well understood, at least in poultry, the molecular and endocrine mechanisms that regulate e.g. mitochondria function and plasticity of thermoregulation over different time scales (from transgenerational to daily variation) need to be unveiled. Plasticity may ameliorate climate change effects on thermoregulation to some extent, but the increased frequency of extreme weather events, and associated in resource availability, may be beyond the scope and/or speed for plastic responses. This could lead to selection for more tolerant phenotypes, if the underlying physiological traits harbour genetic and individual variation for selection to act on – a key question for future research.

2019 ◽  
Vol 11 (9) ◽  
pp. 2547 ◽  
Author(s):  
Alessia Cogato ◽  
Franco Meggio ◽  
Massimiliano De Antoni Migliorati ◽  
Francesco Marinello

Despite the increase of publications focusing on the consequences of extreme weather events (EWE) for the agricultural sector, a specific review of EWE related to agriculture is missing. This work aimed at assessing the interrelation between EWE and agriculture through a systematic quantitative review of current scientific literature. The review analysed 19 major cropping systems (cereals, legumes, viticulture, horticulture and pastures) across five continents. Documents were extracted from the Scopus database and examined with a text mining tool to appraise the trend of publications across the years, the specific EWE-related issues examined and the research gaps addressed. The results highlighted that food security and economic losses due to the EWE represent a major interest of the scientific community. Implementation of remote sensing and imagery techniques for monitoring and detecting the effects of EWE is still underdeveloped. Large research gaps still lie in the areas concerning the effects of EWE on major cash crops (grapevine and tomato) and the agronomic dynamics of EWE in developing countries. Current knowledge on the physiological dynamics regulating the responses of main crops to EWE appears to be well established, while more research is urgently needed in the fields of mitigation measures and governance systems.


2014 ◽  
Vol 13 (1) ◽  
pp. 1-17 ◽  
Author(s):  
Ian Young ◽  
Ben A. Smith ◽  
Aamir Fazil

Global climate change is expected to impact drinking water quality through multiple weather-related phenomena. We conducted a systematic review and meta-analysis of the relationship between various weather-related variables and the occurrence and concentration of Cryptosporidium and Giardia in fresh surface waters. We implemented a comprehensive search in four databases, screened 1,228 unique citations for relevance, extracted data from 107 relevant articles, and conducted random-effects meta-analysis on 16 key relationships. The average odds of identifying Cryptosporidium oocysts and Giardia cysts in fresh surface waters was 2.61 (95% CI = 1.63–4.21; I2 = 16%) and 2.87 (95% CI = 1.76–4.67; I2 = 0%) times higher, respectively, during and after extreme weather events compared to baseline conditions. Similarly, the average concentration of Cryptosporidium and Giardia identified under these conditions was also higher, by approximately 4.38 oocysts/100 L (95% CI = 2.01–9.54; I2 = 0%) and 2.68 cysts/100 L (95% CI = 1.08–6.55; I2 = 48%). Correlation relationships between other weather-related parameters and the density of these pathogens were frequently heterogeneous and indicated low to moderate effects. Meta-regression analyses identified different study-level factors that influenced the variability in these relationships. The results can be used as direct inputs for quantitative microbial risk assessment. Future research is warranted to investigate these effects and potential mitigation strategies in different settings and contexts.


2017 ◽  
Vol 9 (12) ◽  
pp. 160 ◽  
Author(s):  
Rumbidzai D. Katsaruware-Chapoto ◽  
Paramu L. Mafongoya ◽  
Augustine Gubba

Natural and anthropogenic factors have resulted in altered environmental conditions that influence changes in abundance and diversity of insect pests. Global climate change projections focus on crop yields and adaptation strategies to declining yields and ignore the likely impact of a changing climate on insect pests and plant diseases. In this research paper, we review the effects of climate variables namely temperature, carbon dioxide (CO2), precipitation and extreme weather events on insect pests and plant diseases incidence. Elevated temperatures, CO2 and extreme weather events have been shown to alter the distribution, reproductive potential, the incidence and abundance of plant insects and diseases in temperate regions because of the dependence of insects and diseases on environmental conditions. There is limited information on the influence of temperature and carbon dioxide as well as their interaction on the incidence and severity of insect pests, bacterial and viral diseases in the tropical regions. Information on the influence of altered precipitation patterns is also limited but could be of importance in insect distribution studies in a changing climate. Some tropical insects pests are most likely to suffer from extreme heat, resulting in death and hence pest extinction. Future research should focus on the interaction of elevated temperature and CO2, determine the influence of supra optimal summer temperatures, temperature variability, precipitation variability and the corresponding viral and bacterial diseases.


Life ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 71 ◽  
Author(s):  
Reinold ◽  
Wong ◽  
MacLeod ◽  
Meltzer ◽  
Thompson ◽  
...  

The potential impact of climate change on eukaryotes, including humans, has been relatively well described. In contrast, the contribution and susceptibility of microorganisms to a changing climate have, until recently, received relatively less attention. In this review, the importance of microorganisms in the climate change discourse is highlighted. Microorganisms are responsible for approximately half of all primary production on earth, support all forms of macroscopic life whether directly or indirectly, and often persist in “extreme” environments where most other life are excluded. In short, microorganisms are the life support system of the biosphere and therefore must be included in decision making regarding climate change. Any effects climate change will have on microorganisms will inevitably impact higher eukaryotes and the activity of microbial communities in turn can contribute to or alleviate the severity of the changing climate. It is of vital importance that unique, fragile, microbial ecosystems are a focus of research efforts so that their resilience to extreme weather events and climate change are thoroughly understood and that conservation efforts can be implemented as a response. One such ecosystem under threat are the evolutionarily significant microbial mats and stromatolites, such as those present in Shark Bay, western Australia. Climate change models have suggested the duration and severity of extreme weather events in this region will increase, along with rising temperatures, sea levels, and ocean acidification. These changes could upset the delicate balance that fosters the development of microbial mats and stromatolites in Shark Bay. Thus, the challenges facing Shark Bay microbial communities will be presented here as a specific case study.


Author(s):  
Elzbieta M. Bitner-Gregersen ◽  
Torfinn Ho̸rte ◽  
Rolf Skjong

Global warming and extreme weather events reported in the last years have attracted a lot of attention in academia, industry and media. The ongoing debate around the observed climate change has focused on three important questions: will occurrence of extreme weather events increase in the future, which geographical locations will be most affected, and to what degree will climate change have impact on future ship traffic and design of ships and offshore structures? The present study shortly reviews the findings of the Intergovernmental Panel on Climate Change Fourth Assessment Report, AR4, [1] and other relevant publications regarding projections of meteorological and oceanographic conditions in the 21st century and beyond with design needs in focus. Emphasis is on wave climate and its potential implications on safe design and operations of ship structures. A risk based approach for marine structure design accounting for climate change is proposed. The impact of expected wave climate change on ship design is demonstrated for five oil tankers, ranging from Product tanker to VLCC. Consequences of climate change for the hull girder failure probability and hence the steel weight of the deck in the midship region is shown. Recommendations for future research activities allowing adaptation to climate change are given.


2022 ◽  
Author(s):  
Anni Vehola ◽  
Elias Hurmekoski ◽  
Katja Lähtinen ◽  
Enni Ruokamo ◽  
Anders Roos ◽  
...  

Abstract Climate change places great pressure on the construction sector to decrease its greenhouse gas emissions and to create solutions that perform well in changing weather conditions. In the urbanizing world, wood construction has been identified as one of the opportunities for mitigating these emissions. Our study explores citizen opinions on wood usage as a building material under expected mitigation and adaptation measures aimed at a changing climate and extreme weather events. The data are founded on an internet-based survey material collected from a consumer panel from Finland and Sweden during May–June 2021, with a total of 2015 responses. By employing exploratory factor analysis, we identified similar belief structures for the two countries, consisting of both positive and negative views on wood construction. In linear regressions for predicting these opinions, the perceived seriousness of climate change was found to increase positive views on wood construction but was insignificant for negative views. Both in Finland and Sweden, higher familiarity with wooden multistory construction was found to connect with more positive opinions on the potential of wood in building, e.g., due to carbon storage properties and material attributes. Our findings underline the potential of wood material use as one avenue of climate change adaptation in the built environment. Future research should study how citizens’ concerns for extreme weather events affect their future material preferences in their everyday living environments, also beyond the Nordic region.


Author(s):  
Júlia Alves Menezes ◽  
Rhavena Barbosa dos Santos ◽  
Felipe Vommaro ◽  
Ulisses Confalonieri ◽  
Martha Macêdo de Lima Barata ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document