scholarly journals An Integrated Assessment of Community Ecological Based Adaptation (CEBA) Options in Agriculture for Climate Change Adaptation, Resilience Building and Sustainability in Developing Countries: A Case Study of Central Zambia

2021 ◽  
Vol 2 (2) ◽  
pp. 63-80
Author(s):  
Stephen Chitengi Sakapaji

Climate change remains a serious global problem posing a wide range of challenges and impacts which will likely hinder the attainment of the widely discussed sustainable development goals (SDGs). The impacts and threats from a changing climate have the potential to significantly impact all sectors of the global economy and will largely be multifaceted, multidimensional, and multi-sectoral. These adverse impacts will to a greater extent, be manifested at the local and community level where the adaptability capacity is weak and resources are scarce. In the last two decades, there has been growing support and evidence that suggests that local people and communities in partnership with their local governments and NGOs are undertaking community ecological based adaptation (CEBA) practices at both the local and community level which are enhancing their adaptability and resilience capacities to a changing climate. CEBA mechanisms are initiatives and practices that local and rural communities across the developing world are sometimes adopting in partnership with their local government and non-governmental organizations to adapt to a changing climate. However, over the years, these initiatives, experiments, and activities have been poorly actualized, communicated, and there is uncertainty on whether these practices and mechanisms are enhancing the adaptability and resilience capacities of the many poor people in these communities. It is from this background that this paper seeks to assess and analyze present and future climate change impacts on agriculture in Central Zambia and further seeks to appraise the effectiveness of CEBA mechanisms being adopted and utilized in this region. Using community assessment and rural appraisal tools this research paper found that indeed some CEBA practices are innovative and effective and are enhancing the adaptability and resilience of the local people in agriculture in this region. The paper recommends that the advancement, funding, and integration of innovative and effective CEBA practices with scientific knowledge and the ultimate replication and incorporation of these practices into developmental and climate change policies can be one of the most beneficial and effective ways for a sustainable, adaptive, and resilient agriculture sector in the face of a changing and unpredictable climate.

2017 ◽  
Author(s):  
Jatin Anand ◽  
Manjula Devak ◽  
Ashwini Kumar Gosain ◽  
Rakesh Khosa ◽  
Chandrika Thulaseedharan Dhanya

Abstract. The negative impacts of climate change are expected to be felt over wide range of spatial scales, ranging from small basins to large watersheds, which can possibly be detrimental to the services that natural water systems provide to the society. The impact assessment of future climate change on hydrologic response is essential for the decision makers while carrying out management and various adaptation strategies in a changing climate. While, the availability of finer scale projections from regional climate models (RCM) has been a boon to study changing climate conditions. These climate models are subjected to large number of uncertainties, which demands a careful selection of an appropriate climate model, however. In an effort to account for these uncertainties and select suitable climate models, a multi-criteria ranking approach is deployed in this study. Ranking of CORDEX RCMs is done based on its ability to generate hydrologic components of the basin, i.e., runoff simulations using Soil Water Assessment Tool (SWAT) model, by deploying Entropy and PROMETHEE-2 methods. The spatial extent of changes in the different components of hydrologic cycle is examined over the Ganga river basin, using the top three ranked RCMs, for a period from January 2021 to December 2100. It is observed that for monsoon months (June, July, August and September), future annual mean surface runoff will decrease substantially (−50 % to −10 %), while the flows for post-monsoon months (October, November and December) are projected to increase (10–20 %). While, extremes are seen to be increasing during the non-monsoon months, a substantial decrease in medium events is also highlighted. The increase in wet extremes is majorly supplemented by the increased snowmelt runoff during those months. Snowmelt is projected to increase during the months of November to March, with the month of December witnessing 3-4 times increase in the flow. Base flow and recharge are alarmingly decreasing over the basin. Major loss of recharge is expected to occur in central part of the basin. The present study offers a more reliable regional hydrologic impact assessment with quantifications of future dramatic changes in different hydrological sub-system and its mass-transfer, which will help in quantifying the changes in hydrological components in response to climate change changes in the major basin Ganga, and shall provide the water managers with substantive information, required to develop ameliorative strategies.


2020 ◽  
Author(s):  
Rubén D. Manzanedo ◽  
Peter Manning

The ongoing COVID-19 outbreak pandemic is now a global crisis. It has caused 1.6+ million confirmed cases and 100 000+ deaths at the time of writing and triggered unprecedented preventative measures that have put a substantial portion of the global population under confinement, imposed isolation, and established ‘social distancing’ as a new global behavioral norm. The COVID-19 crisis has affected all aspects of everyday life and work, while also threatening the health of the global economy. This crisis offers also an unprecedented view of what the global climate crisis may look like. In fact, some of the parallels between the COVID-19 crisis and what we expect from the looming global climate emergency are remarkable. Reflecting upon the most challenging aspects of today’s crisis and how they compare with those expected from the climate change emergency may help us better prepare for the future.


2021 ◽  
Author(s):  
Christian Huggel ◽  
Simon K. Allen ◽  
Indra D. Bhatt ◽  
Rithodi Chakraborty ◽  
Fabian Drenkhan ◽  
...  

<p>Mountains cover about a quarter of the Earth’s land surface and are home to or serve a substantial fraction of the global population with essential ecosystem services, in particular water, food, energy, and recreation. While mountain systems are expected to be highly exposed to climate change, we currently lack a comprehensive global picture of the extent to which environmental and human systems in mountain regions have been affected by recent anthropogenic climate change.</p><p>Here we undertake an unprecedented effort to detect observed impacts of climate change in mountains regions across all continents. We follow the approach implemented in the IPCC 5<sup>th</sup> Assessment Report (AR5) and follow-up research where we consider whether a natural or human system has changed beyond its baseline behavior in the absence of climate change, and then attribute the observed change to different drivers, including anthropogenic climate change. We apply an extensive review of peer-reviewed and grey literature and identify more than 300 samples of impacts (aggregate and case studies). We show that a wide range of natural and human systems in mountains have been affected by climate change, including the cryosphere, the water cycle and water resources, terrestrial and aquatic ecosystems, energy production, infrastructure, agriculture, health, migration, tourism, community and cultural values and disasters. Our assessment documents that climate change impacts are observed in mountain regions on all continents. However, the explicit distinction of different drivers contributing to or determining an observed change is often highly challenging; particularly due to widespread data scarcity in mountain regions. In that context, we were also able to document a high amount of impacts in previously under-reported continents such as Africa and South America. In particular, we have been able to include a substantial number of place-based insights from local/indigenous communities representing important alternative worldviews.</p><p>The role of human influence in observed climate changes is evaluated using data from multiple gridded observational climate products and global climate models. We find that anthropogenic climate change has a clear and discernable fingerprint in changing natural and human mountain systems across the globe. In the cryosphere, ecosystems, water resources and tourism the contribution of anthropogenic climate change to observed changes is significant, showing the sensitivity of these systems to current and future climate change. Furthermore, our analysis reveals the need to consider the plurality of knowledge systems through which climate change impacts are being understood in mountain regions. Such attempts at inclusivity, which addresses issues of representation and justice, should be deemed necessary in exploring climate change impacts.</p>


2018 ◽  
Vol 33 (3) ◽  
pp. 238-251 ◽  
Author(s):  
Rachel Bezner Kerr ◽  
Hanson Nyantakyi-Frimpong ◽  
Laifolo Dakishoni ◽  
Esther Lupafya ◽  
Lizzie Shumba ◽  
...  

AbstractClimate change is projected to have severe implications for smallholder agriculture in Africa, with increased temperatures, increased drought and flooding occurrence, and increased rainfall variability. Given these projections, there is a need to identify effective strategies to help rural communities adapt to climatic risks. Yet, relatively little research has examined the politics and social dynamics around knowledge and sources of information about climate-change adaptation with smallholder farming communities. This paper uses a political ecology approach to historically situate rural people's experiences with a changing climate. Using the concept of the co-production of knowledge, we examine how Malawian smallholder farmers learn, perceive, share and apply knowledge about a changing climate, and what sources they draw on for agroecological methods in this context. As well, we pay particular attention to agricultural knowledge flows within and between households. We ask two main questions: Whose knowledge counts in relation to climate-change adaptation? What are the political, social and environmental implications of these knowledge dynamics? We draw upon a long-term action research project on climate-change adaptation that involved focus groups, interviews, observations, surveys, and participatory agroecology experiments with 425 farmers. Our findings are consistent with other studies, which found that agricultural knowledge sources were shaped by gender and other social inequalities, with women more reliant on informal networks than men. Farmers initially ranked extension services as important sources of knowledge about farming and climate change. After farmers carried out participatory agroecological research, they ranked their own observation and informal farmer networks as more important sources of knowledge. Contradictory ideas about climate-change adaptation, linked to various positions of power, gaps of knowledge and social inequalities make it challenging for farmers to know how to act despite observing changes in rainfall. Participatory agroecological approaches influenced adaptation strategies used by smallholder farmers in Malawi, but most still maintained the dominant narrative about climate-change causes, which focused on local deforestation by rural communities. Smallholder farmers in Malawi are responsible for <1% of global greenhouse gas emissions, yet our results show that the farmers often blame their own rural communities for changes in deforestation and rainfall patterns. Researchers need to consider differences knowledge and power between scientists and farmers and the contradictory narratives at work in communities to foster long-term change.


2003 ◽  
Vol 3 (2) ◽  
pp. 87-93 ◽  
Author(s):  
Robert Pincus

The traditional connections between wine and location reflect local climate. Climate change threatens these connections, and vintners have a wide range of responses to this impending problem. This article explores the source of the associations between wines and locales, and outlines the causes for global climate change. Three wine makers describe how they might adapt to a changed climate. Their responses run the gamut from adaptation in the vineyard aimed at maintaining current styles, to radical reinvention of the societal and legal structure of the local wine industry.


Author(s):  
Daniel El Chami

In the last few decades, a great deal has been written on the use of sustainable agriculture to improve the resilience of ecosystem services to climate change. However, no tangible and systematic evidence exists on how this agriculture would participate in alleviating impacts on vulnerable rural communities. This paper provides a narrative systematic review (SR) integrated with a bibliometric analysis and a concept network analysis to determine how, in this changing climate, sustainable agriculture can increase the resilience of agrosystems. Our search ranged from the date of the first relevant article until the end of 2018.


2017 ◽  
Author(s):  
Marit Van Tiel ◽  
Adriaan J. Teuling ◽  
Niko Wanders ◽  
Marc J. P. Vis ◽  
Kerstin Stahl ◽  
...  

Abstract. Glaciers are essential hydrological reservoirs, storing and releasing water at various time scales. Short-term variability in glacier melt is one of the causes of streamflow droughts, defined as below normal water availabilities. Streamflow droughts in glacierised catchments have a wide range of interlinked causing factors related to precipitation and temperature on short and long time scales. Climate change affects glacier storage capacity, with resulting consequences for discharge regimes and drought. Future projections of streamflow drought in glacierised basins can, however, strongly depend on the modelling strategies and analysis approaches applied. Here, we examine the effect of different approaches, concerning the glacier modelling and the drought threshold, on the characterisation of streamflow droughts in glacierised catchments. Streamflow is simulated with the HBV-light model for two case study catchments, the Nigardsbreen catchment in Norway and the Wolverine catchment in Alaska, and two future climate change scenarios (RCP4.5 and RCP8.5). Two types of glacier modelling are applied, a constant and dynamical glacier area conceptualisation. Streamflow droughts are identified with the variable threshold level method and their characteristics are compared between two periods, a historical (1975–2004) and future (2071–2100) period. Two existing threshold approaches to define future droughts are employed, (1) the threshold from the historical period and (2) a transient threshold approach, whereby the threshold adapts every year in the future to the changing regimes. Results show that drought characteristics differ among the combinations of glacier area modelling and thresholds. The historical threshold combined with a dynamical glacier area projects extreme increases in drought severity in the future, caused by the regime shift due to a reduction in glacier area. The historical threshold combined with a constant glacier area results in a drastic decrease of the number of droughts. The drought characteristics between future and historic periods are more similar when the transient threshold is used, for both glacier dynamics conceptualisations. With the transient threshold causing factors of future droughts, can be analysed. This study revealed the different effects of methodological choices on future streamflow drought projections and it highlights how the options can be used to analyse different aspects of future droughts: the transient threshold for analysing future drought processes, the historical threshold to assess changes between periods, the constant glacier area to analyse the effect of short term climate variability on droughts and the dynamical glacier area to model realistic future discharges under climate change.


2020 ◽  
Author(s):  
Eyal Amsalem ◽  
Gil Rilov

1.AbstractClimate change threatens the resilience of species, especially at their warm distributional edge in extreme environments. However, not much is known about the thermal vulnerability of marine intertidal species at this edge. We investigated the thermal vulnerability of the tidepool shrimp, Palaemon elegans in the fast-warming southeastern Mediterranean, its warm distributional edge. Tidepool organisms experience strong and fast thermal fluctuations. This might make them more resilient to change, but also bring them closer to their thermal limits during extreme conditions. To test the shrimp’s resilience, we tested three hypotheses: (1) P. elegance in the southeast Mediterranean has higher critical thermal maximum (CTMax) than in cooler regions, (2) the shrimp possess seasonal acclimatization, but (3) long exposure to extreme summer temperatures might erode its thermal performance making it vulnerable to future climate change. We characterized the shrimp’s thermal environment and population dynamics, determined CTMax and tested diverse physiological performance attributes (respiration, digestion, activity, growth) under a wide range of temperatures during winter and summer. P. elegans has a wide optimum performance range between 20-30°C during summer and its CTMax is 38.1°C, higher than its Atlantic counterparts. However, its warming tolerance is only 0.3°C, indicating low capacity for dealing with further warming in pools compared to northeast Atlantic populations that have wider tolerance. Prolonged exposure to current mean summer values in open water (∼ 32°C) would also significantly reduce its performance and increase mortality. This suggests that its population viability may be reduced under continuous regional warming and intensification of extreme events.


2021 ◽  
Vol 23 ◽  
Author(s):  
Lacey Anne Lingelbach

Despite being farther away from direct impacts of sea-level rise, Florida’s rural inland localities, like those across the nation and world, can be as vulnerable to a changing climate as coastal ones. However, unlike their urban coastal peers, many have not addressed or acknowledged climate change. Few existing research projects have explored the reasons why. To begin filling the knowledge gap and understanding the complexities of the rural Florida climate story, this research aims to answer the question: What challenges are preventing rural inland communities in Florida from addressing climate change, and what do they need to overcome them? To characterize these obstacles and identify next steps, a combination of primary (i.e. surveys) and secondary sources from the author, government agencies, scientists, universities, and other expert organizations were analyzed holistically. The four challenges identified include: community sentiment, investment capacity, gaps in climate literacy, and external connections and coordination. These challenges are linked to numerous underlying issues characteristic of rural communities, such as socioeconomic levels, physical and social isolation, the availability of human capital, and cultural values and perceptions. Based on this information, the discussion section reviews how various stakeholders - local governments, community members, and external supporting agents - can actively curtail disparities in climate preparedness.


Climate ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 6
Author(s):  
Emmanuel Dubois ◽  
Marie Larocque ◽  
Sylvain Gagné ◽  
Marco Braun

Long-term changes in precipitation and temperature indirectly impact aquifers through groundwater recharge (GWR). Although estimates of future GWR are needed for water resource management, they are uncertain in cold and humid climates due to the wide range in possible future climatic conditions. This work aims to (1) simulate the impacts of climate change on regional GWR for a cold and humid climate and (2) identify precipitation and temperature changes leading to significant long-term changes in GWR. Spatially distributed GWR is simulated in a case study for the southern Province of Quebec (Canada, 36,000 km2) using a water budget model. Climate scenarios from global climate models indicate warming temperatures and wetter conditions (RCP4.5 and RCP8.5; 1951–2100). The results show that annual precipitation increases of >+150 mm/yr or winter precipitation increases of >+25 mm will lead to significantly higher GWR. GWR is expected to decrease if the precipitation changes are lower than these thresholds. Significant GWR changes are produced only when the temperature change exceeds +2 °C. Temperature changes of >+4.5 °C limit the GWR increase to +30 mm/yr. This work provides useful insights into the regional assessment of future GWR in cold and humid climates, thus helping in planning decisions as climate change unfolds. The results are expected to be comparable to those in other regions with similar climates in post-glacial geological environments and future climate change conditions.


Sign in / Sign up

Export Citation Format

Share Document