scholarly journals Impact of Extreme Climate on Orage Farming Surjan System in Botola

2022 ◽  
Vol 3 (1) ◽  
pp. 01-07
Author(s):  
Gusti Rusmayadi ◽  
Umi Salawati ◽  
Dewi Erika Adriani

The determining factor for the success of agricultural cultivation in tidal swampland is water availability, which fluctuates throughout the plant's growth. The availability of water for oranges has a significant role in the final production of the product. In Indonesia, there are three types of rain patterns with variations in the growing season related to water availability: the rainy season between October and March and the dry season between April and September. Climate extremes such as drought (El-Niño) and wetness (La-Niña) fluctuate dynamically, impact shifts at the beginning and end of the growing season, and hurt citrus crop productivity. Therefore, an analysis of rice planting time in tidal swampland in Barito Kuala under extreme climatic events was carried out. The research was conducted in September – December 2020 with the survey method. The data was dug in-depth on the research respondents: citrus farmers, fruit traders, and related agencies. The number of samples was 90 people (45 male farmers and 45 female farmers). Two different villages were surveyed in each sub-district according to the type of tidal land, namely Marabahan sub-district (SP1 village and SP2 village), type A, Mandastana (Karang Indah village and Karang Bunga village) type B, and Cerbon sub-district. (Village of Simpang Nungki and Sungai Kambat) Type C. Planting time in tidal land begins after the amount of rainwater is sufficient to dissolve the iron content in the water. The probability of an El-Niño occurrence with an intensity of 1, 2, 3, and 4 years has the highest frequency of occurrence—respectively 3, 3, 5, and 3 times with probability around 16.7% to 27.8%. Meanwhile, La-Nia with an intensity of once a year with the highest frequency eight times with a 40.0% chance. La-Nia events coexist with El-Nio 15 times, and generally, El-Nio precedes La-Nia by about 44%. The cropping pattern in tidal swampland shows high resistance to climate change. Namely, the planting time has not changed much for decades under different climatic conditions.

2021 ◽  
Author(s):  
Thomas Creedy ◽  
Rebecca A. Asare ◽  
Alexandra C. Morel ◽  
Mark Hirons ◽  
Yadvinder Malhi ◽  
...  

Abstract Anthropogenic climate change causes more frequent and intense fluctuations in the El Niño Southern Oscillation (ENSO). Understanding the effects of ENSO on agricultural systems is crucial for predicting and ameliorating impacts on lives and livelihoods, particularly in perennial tree crops, which may show both instantaneous and delayed responses. Using cocoa production in Ghana as a model system, here we show that in recent times, El Niño years experience reductions in cocoa production followed by several years of increased production, a significantly different pattern than prior to the 1980s. ENSO phase affects the climate in Ghana, and over the same time period, we see concomitant significant shifts in the climatic conditions resulting from ENSO extremes, with increasing temperature and water stress. Our results illustrate the big data analyses necessary to improve understanding of perennial crop responses to climate change in general, and climate extremes in particular.


Author(s):  
D.H. Ranade ◽  
M.L. Jadav ◽  
Indu Swarup ◽  
O.P. Girothia ◽  
D.V. Bhagat ◽  
...  

Background: Rainwater harvesting is commonly practiced in areas, where the rainfall is insufficient for crop growing. Due to the intermittent nature of run-off events, it is necessary to store the maximum possible amount of rainwater during the rainy season so that it may be used as irrigation to enhance the crop productivity and farm income under soybean based cropping system.Methods: A study was carried out during 2018-2019 in Indore district of Malwa region. Rainwater harvesting tanks at on station (42´21´2.4m) and on farm (15´11´4m) were constructed for irrigation water availability. Provision of water harvesting tank increased the irrigation water availability (1781m3 and 630m3 respectively) and stored water was managed through various irrigation systems viz. rain gun, drip and flood.Result: It was resulted that the provision of water harvesting tanks enhanced the crop productivity and farm income under soybean based cropping system. Availability of irrigation encouraged the farmers to diversify the cropping pattern (soybean-chickpea, soybean -wheat). It is also clear from the study that even with smaller storage tank and through conjunctive use of ground (1164.2m3) and surface water (596m3), multiple crops (Soybean, potato, sweet corn, chickpea, onion, garlic etc.) can be grown. Soybean-Chickpea cropping system at station gave the net return of 70976 Rs/ha with B: C ratio of 3.15. Soybean-Wheat cropping system at farm gave the net return of 119000 Rs/ha with B:C ratio of 3.38. 


2009 ◽  
Vol 39 (4) ◽  
pp. 1003-1011 ◽  
Author(s):  
Philip Martin Fearnside

Global warming has potentially catastrophic impacts in Amazonia, while at the same time maintenance of the Amazon forest offers one of the most valuable and cost-effective options for mitigating climate change. We know that the El Niño phenomenon, caused by temperature oscillations of surface water in the Pacific, has serious impacts in Amazonia, causing droughts and forest fires (as in 1997-1998). Temperature oscillations in the Atlantic also provoke severe droughts (as in 2005). We also know that Amazonian trees die both from fires and from water stress under hot, dry conditions. In addition, water recycled through the forest provides rainfall that maintains climatic conditions appropriate for tropical forest, especially in the dry season. What we need to know quickly, through intensified research, includes progress in representing El Niño and the Atlantic oscillations in climatic models, representation of biotic feedbacks in models used for decision-making about global warming, and narrowing the range of estimating climate sensitivity to reduce uncertainty about the probability of very severe impacts. Items that need to be negotiated include the definition of "dangerous" climate change, with the corresponding maximum levels of greenhouse gases in the atmosphere. Mitigation of global warming must include maintaining the Amazon forest, which has benefits for combating global warming from two separate roles: cutting the flow the emissions of carbon each year from the rapid pace of deforestation, and avoiding emission of the stock of carbon in the remaining forest that can be released by various ways, including climate change itself. Barriers to rewarding forest maintenance include the need for financial rewards for both of these roles. Other needs are for continued reduction of uncertainty regarding emissions and deforestation processes, as well as agreement on the basis of carbon accounting. As one of the countries most subject to impacts of climate change, Brazil must assume the leadership in fighting global warming.


2018 ◽  
Vol 31 (15) ◽  
pp. 6189-6207 ◽  
Author(s):  
Scott B. Power ◽  
François P. D. Delage

Increases in greenhouse gas emissions are expected to cause changes both in climatic variability in the Pacific linked to El Niño–Southern Oscillation (ENSO) and in long-term average climate. While mean state and variability changes have been studied separately, much less is known about their combined impact or relative importance. Additionally, studies of projected changes in ENSO have tended to focus on changes in, or adjacent to, the Pacific. Here we examine projected changes in climatic conditions during El Niño years and in ENSO-driven precipitation variability in 36 CMIP5 models. The models are forced according to the RCP8.5 scenario in which there are large, unmitigated increases in greenhouse gas concentrations during the twenty-first century. We examine changes over much of the globe, including 25 widely spread regions defined in the IPCC special report Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX). We confirm that precipitation variability associated with ENSO is projected to increase in the tropical Pacific, consistent with earlier research. We also find that the enhanced tropical Pacific variability drives ENSO-related variability increases in 19 SREX regions during DJF and in 18 during JJA. This externally forced increase in ENSO-driven precipitation variability around the world is on the order of 15%–20%. An increase of this size, although substantial, is easily masked at the regional level by internally generated multidecadal variability in individual runs. The projected changes in El Niño–driven precipitation variability are typically much smaller than projected changes in both mean state and ENSO neutral conditions in nearly all regions.


2017 ◽  
Vol 114 (29) ◽  
pp. 7543-7548 ◽  
Author(s):  
Jingfang Fan ◽  
Jun Meng ◽  
Yosef Ashkenazy ◽  
Shlomo Havlin ◽  
Hans Joachim Schellnhuber

Climatic conditions influence the culture and economy of societies and the performance of economies. Specifically, El Niño as an extreme climate event is known to have notable effects on health, agriculture, industry, and conflict. Here, we construct directed and weighted climate networks based on near-surface air temperature to investigate the global impacts of El Niño and La Niña. We find that regions that are characterized by higher positive/negative network “in”-weighted links are exhibiting stronger correlations with the El Niño basin and are warmer/cooler during El Niño/La Niña periods. In contrast to non-El Niño periods, these stronger in-weighted activities are found to be concentrated in very localized areas, whereas a large fraction of the globe is not influenced by the events. The regions of localized activity vary from one El Niño (La Niña) event to another; still, some El Niño (La Niña) events are more similar to each other. We quantify this similarity using network community structure. The results and methodology reported here may be used to improve the understanding and prediction of El Niño/La Niña events and also may be applied in the investigation of other climate variables.


Author(s):  
Stanley A. Changnon ◽  
Roger A., Jr. Pielke

Much has been said about El Niño 97-98, some of it profound and some not. Several of the key findings from this assessment are reflected in an excellent short summary published by the World Meteorological Organization (WMO) in January 1999. . . . The 1997/1998 El Niño was probably the strongest in recorded history; it disrupted the lives of millions of people on all the Earth’s inhabited continents. Not all climate extremes and severe weather events of the period, however, can be directly attributed to the El Niño event. Further, not all its impacts were negative, and some regions that were expected to suffer were not seriously affected. (Obasi, 1999) . . . As the WMO found on a global scale, we have documented the profound impacts of El Niño 97-98 in the United States. But, perhaps contrary to conventional wisdom, the impacts in the United States were, in the aggregate, positive. Because El Niño shifted the geographical distribution of seasonal anomalies and because scientists were able to anticipate these shifts, many decision makers were able to profit from the early warnings to take compensatory actions. The accuracy of the predictions, and the successful use by decision makers of those predictions, offers the promise of the development of a more robust climate service in the United States. The remainder of this chapter summarizes the surprises, the lessons learned, and the legacy of El Niño 97-98. Once the rapid onset of El Niño conditions was detected late in the spring of 1997, forecasters successfully predicted the event’s strength and duration. The oceanic predictions reinforced the ensuing seasonal climate forecasts. The official seasonal outlooks issued by the National Oceanic and Atmospheric Administration (NOAA) in the summer of 1997 skillfully predicted the fall, winter, and early spring 1997-1998 conditions in many parts of the United States many months in advance. The seasonal forecasts had an accuracy of greater than 50 percent for temperatures and of between 30 percent and 50 percent for precipitation, the highest levels of accuracy ever attained, a reflection of the benefits of the considerable research and ocean-monitoring efforts directed at the El Niño Southern Oscillation (ENSO) over the past twenty years.


2007 ◽  
Vol 274 (1625) ◽  
pp. 2539-2545 ◽  
Author(s):  
Scott Wilson ◽  
D. Ryan Norris ◽  
Amy G Wilson ◽  
Peter Arcese

Predicting how populations respond to climate change requires an understanding of whether individuals or cohorts within populations vary in their response to climate variation. We used mixed-effects models on a song sparrow ( Melospiza melodia ) population in British Columbia, Canada, to examine differences among females and cohorts in their average breeding date and breeding date plasticity in response to the El Niño Southern Oscillation. Climatic variables, age and population density were strong predictors of timing of breeding, but we also found considerable variation among individual females and cohorts. Within cohorts, females differed markedly in their breeding date and cohorts also differed in their average breeding date and breeding date plasticity. The plasticity of a cohort appeared to be due primarily to an interaction between the environmental conditions (climate and density) experienced at different ages rather than innate inter-cohort differences. Cohorts that expressed higher plasticity in breeding date experienced warmer El Niño springs in their second or third breeding season, suggesting that prior experience affects how well individuals responded to abnormal climatic conditions. Cohorts born into lower density populations also expressed higher plasticity in breeding date. Interactions between age, experience and environmental conditions have been reported previously for long-lived taxa. Our current results indicate that similar effects operate in a short-lived, temperate songbird.


Sign in / Sign up

Export Citation Format

Share Document