scholarly journals Synthesis and Antimicrobial Activities of some Quaternary Morpholinium Chlorides

2010 ◽  
Vol 59 (1) ◽  
pp. 49-53 ◽  
Author(s):  
BOGUMIŁ BRYCKI ◽  
ZOFIA DEGA-SZAFRAN ◽  
ILONA MIRSKA

The synthesis and antimicrobial activity of 31 morpholinium chlorides, divided into five series depending on the substituents attached to the nitrogen atom, N-carboxyalkyl-morpholinium chlorides (1a-e), N-carbalkoxymethyl-N-methyl-morpholinium chlorides (2a-f), N-carbethoxymethyl-N-alkyl-morpholinium chlorides (3a-g), N-carbalkoxymethyl-N-dodecyl-morpholinium chlorides (4a-f) and N-carboxymethyl-N-alkyl-morpholinium chlorides (5a-g) is reported. The compounds investigated were tested for antimicrobial activity against Staphylococcus aureus, Escherichia coli, Proteus vulgaris, Pseudomonas aeruginosa, Candida albicans and Trichophyton menthagrophytes. The most active are compounds with a long N-alkyl group and with the substituent CH2COOC(n)H(2n-1) (n = 8-16).

2018 ◽  
Vol 1 (1) ◽  
pp. 45-55
Author(s):  
Yani Mulyani ◽  
Ika Kurnia Sukmawati ◽  
Jajang Jafar Sodik

Abstract. This research aimed to determine the antimicrobial activity of ethanol extract of Petiveria alliacea stem (EEPS) against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined by perforation and broth micro dilution methods. Study on the mechanism of action of EEPS was conducted by molecular docking and Scanning Electron Microscopy (SEM) techniques. The results showed that EEPS had an inhibitory activity against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli and Candida albicans with MIC values of 256, 128, 256, 512 µg/ml, consecutively. These values are included in to the medium category. Through the process of molecular docking, the best interaction was observed between S-benzyl-L-cysteine sulfoxide with penicillin-binding protein receptor of Pseudomonas aeruginosa characterized by free energy change (ΔG) of 4.32 kcal/mol, and the Ki value of 682.16 μM. Four folds of MIC of the EEPS caused changes in the morphology of Pseudomonas aeruginosa. EEPS possessed antimicrobial activities against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans.   Keywords: Antimicrobial Activity, Molecular Docking, Petiveria alliacea, SEM.


2012 ◽  
Vol 61 (3) ◽  
pp. 223-225
Author(s):  
MUHAMMAD JAWWAD SAIF ◽  
MOHAMMED ZUBER ◽  
JAMIL ANWAR ◽  
MUNAWAR ALI MUNAWAR

The antimicrobial activity of two new series of bis-piperidinium compounds with alkyl chains of different lengths against bacterial (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus subtilis) and fungal strains (Aspergillus flavus, Aspergillus niger, Rhodolorula rubera, Lipomyces lopofera and Candida albicans), are described. Antimicrobial activities of the synthesized compounds were compared to that of dodecyltrimethylammonium chloride. Bis-piperidinium salts possessing 12-16 carbon side chains showed better antimicrobial properties as compared to the standard dodecyltrimethylammonium chloride.


Medicina ◽  
2008 ◽  
Vol 44 (12) ◽  
pp. 977 ◽  
Author(s):  
Alvydas Pavilonis ◽  
Algirdas Baranauskas ◽  
Ligita Puidokaitė ◽  
Žaneta Maželienė ◽  
Arūnas Savickas ◽  
...  

Objective. To evaluate the antimicrobial activity of soft and purified propolis extracts. Study object and methods. Antimicrobial activity of soft and purified propolis extracts was determined with reference cultures of Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 25922, Klebsiella pneumoniae ATCC 33499, Pseudomonas aeruginosa ATCC 27853, Proteus mirabilis ATCC 12459, Bacillus subtilis ATCC 6633, Bacillus cereus ATCC 8035, and fungus Candida albicans ATCC 60193. Microbiological tests were performed under aseptic conditions. Minimum inhibitory concentration (MIC) – the highest dilution of preparation (the lowest concentration of preparation) that suppresses growth of reference microorganisms – was determined. Results. Concentration of phenolic compounds in soft propolis extract that possesses antimicrobial activity against gram-positive (Staphylococcus aureus, Enterococcus faecalis) and gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa, and Proteus mirabilis) is 0.587±0.054 mg and 0.587±0.054–0.394±0.022 mg (P>0.05) and in purified propolis extract – 0.427±0.044 mg and 0.256±0.02 mg (P>0.05). Klebsiella pneumoniae is most resistant to soft propolis extract when the concentration of phenolic compounds is 1.119± 0.152 mg and to purified propolis extract when the concentration of phenolic compounds is 1.013±0.189 mg (P>0.05). Spore-forming Bacillus subtilis bacteria are more sensitive to soft and purified propolis extracts when the concentration of phenolic compounds is 0.134±0.002 mg and 0.075±0.025 mg, respectively, and Bacillus cereus – when the concentration is 0.394±0.022 mg and 0.256±0.02 mg (P>0.05). Sensitivity of fungus Candida albicans to soft and purified propolis extracts is the same as Bacillus subtilis. Encapsulated bacterium Klebsiella pneumoniae is most resistant to antimicrobial action of soft and purified propolis extracts as compared with gram-positive Staphylococcus aureus and Enterococcus faecalis bacteria (P<0.05), gram-negative Escherichia coli, Pseudomonas aeruginosa, and Proteus mirabilis (P<0.05), sporeforming Bacillus subtilis and Bacillus cereus bacteria (P<0.05), and fungus Candida albicans (P<0.05). There is no statistically significant difference between antimicrobial effect of soft propolis extract and purified propolis extract on gram-positive bacteria, gram-negative bacteria, spore-forming bacteria, encapsulated bacteria, and Candida fungus. Conclusions. Soft and purified propolis extracts possess antimicrobial activity. They could be recommended as natural preservatives in the manufacture of pharmaceutical products.


1994 ◽  
Vol 302 (2) ◽  
pp. 535-538 ◽  
Author(s):  
J Alvarez-Bravo ◽  
S Kurata ◽  
S Natori

Previously, we identified a core undecapeptide of sapecin B having antimicrobial activity. Based on the structure of this peptide, we systematically synthesized peptides consisting of terminal basic motifs and internal oligo-leucine sequences and examined their antimicrobial activities. Of these peptides, RLKLLLLLRLK-NH2 and KLKLLLLLKLK-NH2 were found to have potent microbicidal activity against Staphylococcus aureus, Escherichia coli, methicillin-resistant S. aureus and Candida albicans in liquid medium. We also synthesized the D-enantiomer of KLKLLLLLKLK-NH2. This enantiomer was resistant to tryptic digestion and persisted longer in the culture medium, showing greater antimicrobial activity than the original peptide.


2001 ◽  
Vol 8 (3) ◽  
pp. 159-164 ◽  
Author(s):  
S. B. Jagtap ◽  
N. N. Patil ◽  
B. P. Kapadnis ◽  
B. A. Kulkarni

Erbium(III) complexes of 2-hydroxy-l,4-naphthalenedione-1-oxime and its C-3 substituted derivatives are synthesized and characterized by elemental analysis, thermogravimetric analysis, infrared spectroscopy, magnetic susceptibility measurements 2-hydroxy-1,4-naphthalenedione-1-oxime derivatives are analysed using H1 and C13 NMR spectroscopy. The molecular composition of the synthesized complexes is found to be [ML3(H2O)2]. The antimicrobial activity of these complexes is determined by well diffusion method against the target microorganisms- Staphylococcus aureus, Xanthomonas campestris, Pseudomonas aeruginosa, Candida albicans and Aspergillus niger. The antimicrobial activities of 2- hydroxy-1,4-naphthalenedione-1-oximes and their complexes are compared. It is observed that 2-hydroxy-1,4-naphthalenedione-l-oximes exhibit higher antifungal activity as compared to antibacterial activity. These activities are reduced upon complexation of these oximes with Erbium.


2004 ◽  
Vol 3 (1) ◽  
pp. 73-77 ◽  
Author(s):  
Slavica Ilic ◽  
Sandra Konstantinovic ◽  
Zoran Todorovic

Different extracts containing bioactive components and etheric oil of the flowers of Linum capitation kit. (Linacea) of Serbian origin were tested for an Antimicrobial activity against four bacteria (Staphylococcus aureus Escherichia coli, Bacillus subtilus, Pseudomonas aeruginosa), one mold (Aspergillus niger) and one yeast (Candida albicans). The isolated Flavonoids were also tested against Staphylococcus aureus, Escherichia coli Bacillus anhtracis, Pseudomonas aeruginosa, Aspergillus niger, Candida albicans and Herpes simplex virus type.


2021 ◽  
Vol 9 (1) ◽  
pp. 1-7
Author(s):  
Bibek Adhikari ◽  
Pradeep Kumar Shah ◽  
Roman Karki

A wide range of medicinal plant extracts has phytochemicals that possess antimicrobial properties and these plants are used to treat several infections. The study aimed to assess the antimicrobial activities of some spices extracts and to evaluate the phytochemicals present in them. The extracts of spices were prepared using Soxhlet apparatus refluxing with methanol and ethanol. The well diffusion technique was implemented for the evaluation of antimicrobial activities of the extracts and the zone of inhibitions was recorded in millimeters. The antimicrobial test was done against five bacterial isolates: Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa, Salmonella enterica serotype Typhi, and Staphylococcus aureus and a fungal isolate: Candida albicans. The extracts were concentrated by Rotary Vacuum Evaporator and a stock solution of 200 mg/mL was prepared by dissolving in 10 % DMSO. Concentrations of 40, 60, 80 and 100 mg/mL extracts were used for antimicrobial activity. The result of this study showed that clove extracts had the highest antimicrobial property against all the test microorganisms. Methanolic extract of clove had the highest inhibitory effect against Proteus mirabilis (24.21±0.15 mm), Pseudomonas aeruginosa (19.78±0.23 mm), and Candida albicans (20.07±0.08 mm) whereas ethanolic extract was effective against Escherichia coli (20.44±0.16 mm), Salmonella Typhi (21.66±0.31 mm) and Candida albicans (21.11±0.09 mm). Cinnamon and pepper extracts, leaving some exceptions, also had antimicrobial properties. The presence of phytochemicals: polyphenols, flavonoids, and tannins are the major components responsible for antimicrobial activity. Thereby, this study successfully demonstrated the possibilities of using spices extracts in the treatment of microbial infections.


2011 ◽  
Vol 6 (6) ◽  
pp. 1934578X1100600 ◽  
Author(s):  
Angel Konakchiev ◽  
Milka Todorova ◽  
Bozhanka Mikhova ◽  
Antonina Vitkova ◽  
Hristo Najdenski

The essential oil of Achillea distans W. et K. flower heads was analyzed by GC and GC-MS. Altogether 43 components in concentrations more than 0.1% were identified representing 93.5% of the oil composition. The main constituents were 1,8-cineole (16.8%), trans-thujone (9.8%), sabinene (8.2%), borneol (7.5%), β-pinene (6.5%), and camphor (5.8%). The oil showed moderate activity against Staphylococcus aureus and Candida albicans, and weak activity against Salmonella typhimurium, Proteus vulgaris, and Escherichia coli.


Author(s):  
Rajanikanth Garapati ◽  
N. Ramesh

Objective: In vitro investigated the potential of methanol extracts of micro-propagated C. orchiodes in the antimicrobial property against the three gram-negative bacteria, two gram-positive and one fungal filament.Methods: The micro propagated callus methanol extract was examined against Escherichia coli, Proteus vulgaris, Salmonella typhimurium, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus cereus and Candida albicans. The zone of inhibitions are determined at 10 mg/ml concentration of methanol extracts of callus on agar well plate and MIC against tested microorganism.Results: The highest antibacterial activity recorded in Staphylococcus aureus Bacillus cereus and followed by Candida albicans. Antibacterial activity of leaf extracts of A. reticulata was also significant against the tested microorganisms Escherichia coli, Salmonella typhi, Proteus vulgaris, Pseudomonas aeruginosa compared to ciprofloxacin.Conclusion: Based on the above observations, these extracts were further evaluated for their effect on microorganisms causing infections like typhoid fever, urinary tract infections, septicemia, toxic shock syndrome, skin infection, nosocomial infection, arthritis and diarrhoea. The results also suggest that these plants serve a therapeutic purpose in the treatment bacterial infections.


Medicina ◽  
2011 ◽  
Vol 47 (3) ◽  
pp. 24 ◽  
Author(s):  
Vilma Jurkštienė ◽  
Alvydas Pavilonis ◽  
Daiva Garšvienė ◽  
Algirdas Juozulynas ◽  
Laimutė Samsonienė ◽  
...  

The aim of the study was to determine antimicrobial activity of rhaponticum and shrubby cinquefoil extracts. Material and Methods. Ethanol extract from the leaves of rhaponticum (Rhaponticum carthamoides D.C. Iljin) and shrubby cinquefoil (Potentilla fruticosa L.) was produced at the Department of Food Technology, Kaunas University of Technology. The antimicrobial activity of the viscous extract or rhaponticum and shrubby cinquefoil was evaluated using standard microorganism cultures (bacteria Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 25922, Klebsiella pneumoniae ATCC 33499, Pseudomonas aeruginosa ATCC 27853, Proteus mirabilis ATCC 12459, Bacillus subtilis ATCC 6633, Bacillus cereus ATCC 8035 and fungi Candida albicans ATCC 60193). The minimum inhibitory concentration (MIC) of the examined preparations was determined. Results. Both studied preparations – rhaponticum (Rhaponticum carthamoides D.C. Iljin) and shrubby cinquefoil (Potentilla fruticosa L.) – demonstrated similar antimicrobial activity. The highest sensitivity to the studied preparations was observed in microbes with eukaryotic cell structure: Candida albicans, which is a fungus, and a spore-forming prokaryotic bacterium, Bacillus cereus. The highest resistance was observed in Escherichia coli and Klebsiella pneumoniae. Conclusions. The studied preparations – viscous extracts of rhaponticum and shrubby cinquefoil – are substances with antimicrobial activity against gram-positive (Staphylococcus aureus and Enterococcus faecalis) and gram-negative (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Proteus mirabilis) bacteria, spore-forming bacteria (Bacillus subtilis and Bacillus cereus), and fungi (Candida albicans).


Sign in / Sign up

Export Citation Format

Share Document