scholarly journals Spent ground coffee – awaking the sustainability prospects

2021 ◽  
Vol 1 (1) ◽  
pp. 1-6
Author(s):  
Ahmad Beng Hong Kueh

This paper outlines the threat of spent coffee ground (SCG) towards environmental health and some promising remedial efforts carried out by the scientific community working against it. To maintain human and earth wellbeing, massive biowastes left behind by the rising popularity of coffee drinking and its processing must be properly addressed. The recent waste to wealth value engineering efforts carried out to repurpose these biowastes are first presented. Some promising applications of SCGs in various prospective civil engineering areas alongside their favorable findings are then summarized. Attributed to beneficial properties as reported in existing studies, silica fume is recommended as the potential constituent to mix with SCG for future construction materials exploration in overcoming both the biowaste and industrial waste issues. 

2021 ◽  
Vol 765 (1) ◽  
pp. 012089
Author(s):  
R Taufik ◽  
M Mohamad ◽  
R Wannahari ◽  
N F Shoparwe ◽  
WHW Osman ◽  
...  

2021 ◽  
pp. 002199832110022
Author(s):  
Ahmed Alhelal ◽  
Zaheeruddin Mohammed ◽  
Shaik Jeelani ◽  
Vijaya K Rangari

Semi-crystalline carbon biochar is derived from spent coffee grounds (SCG) by a controlled pyrolysis process at high temperature/pressure conditions. Obtained biochar is characterized using XRD, SEM, and TEM techniques. Biochar particles are in the micrometer range with nanostructured morphologies. The SCG biochar thus produced is used as reinforcement in epoxy resin to 3 D print samples using the direct-write (DW) method with 1 and 3 wt. % loadings. Rheology results show that the addition of biochar makes resin viscous, enabling it to be stable soon after print; however, it could also lead to clogging of resin in printer head. The printed samples are characterized for chemical, thermal and mechanical properties using FTIR, TGA, DMA and flexure tests. Storage modulus improved with 1 wt. % biochar addition up to 27.5% and flexural modulus and strength increased up to 55.55% and 43.30% respectively. However, with higher loading of 3 wt. % both viscoelastic and flexural properties of 3D printed samples drastically reduced thus undermining the feasibility of 3D printing biochar reinforced epoxies at higher loadings.


2013 ◽  
Vol 740 ◽  
pp. 759-762
Author(s):  
Hao Zeng Bao

In many areas, there are still a development road construction materials, traditionally, often use reinforced concrete, asphalt and other adhesive method to strengthen the low strength of rock and soil anti-freeze expansion coefficient; And now all countries in the world are studying how to use industrial production waste development of new composite materials. One of the most development potential, the production of industrial waste - slime. This paper USES the Russian kazan national construction university experimental methods, in the experiment to improve frost heaving soil physical and mechanical properties of the method for the synthesis of adhesive, based on the feasibility and applicability, environmental assessment of research and analysis, for the use of adhesive put forward a lot of reference value.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Shamsad Ahmad ◽  
Ibrahim Hakeem ◽  
Mohammed Maslehuddin

In the exploratory study presented in this paper, an attempt was made to develop different mixtures of ultrahigh performance concrete (UHPC) using various locally available natural and industrial waste materials as partial replacements of silica fume and sand. Materials such as natural pozzolana (NP), fly ash (FA), limestone powder (LSP), cement kiln dust (CKD), and pulverized steel slag (PSS), all of which are abundantly available in Saudi Arabia at little or no cost, were employed in the development of the UHPC mixtures. A base mixture of UHPC without replacement of silica fume or sand was selected and a total of 24 trial mixtures of UHPC were prepared using different percentages of NP, FA, LSP, CKD, and PSS, partially replacing the silica fume and sand. Flow and 28-d compressive strength of each UHPC mixture were determined to finally select those mixtures, which satisfied the minimum flow and strength criteria of UHPC. The test results showed that the utilization of NP, FA, LSP, CKD, and PSS in production of UHPC is possible with acceptable flow and strength. A total of 10 UHPC mixtures were identified with flow and strength equal to or more than the minimum required.


2021 ◽  
Vol 29 (9) ◽  
pp. 597-604
Author(s):  
Supparoek Boopasiri ◽  
Pongdhorn Sae-Oui ◽  
Sirilug Lundee ◽  
Sukanya Takaewnoi ◽  
Chomsri Siriwong

2021 ◽  
Vol 5 (3) ◽  
pp. 840-851
Author(s):  
Nurul Azhar ◽  
◽  
Roni Kastaman ◽  
Anas Bunyamin

The agricultural, forestry, and fisheries sectors and also the processing industry sectors in Sumedang Regency contributed the highest GDRP value in 2014-2018, so that Sumedang Regency has a potential in agro-industrial sector. This research aims to determined the priority of superior agro-industrial products and public assessment of superior agro-industrial products that have been determined in Sumedang Regency. This research used the Comparison of Exponential Method (MPE) and ANOVA analysis. The data analysis tools were Microsoft Excel and IBM SPSS Statistics 24 Software. The results of the MPE analysis showed that the priority of superior agro-industrial products in Sumedang Regency were ground coffee, roasted coffee, Cilembu roasted sweet potatoes, Cilembu sweet potato chips, red bako mole, opak ketan, white bako mole, Sumedang tofu, tempeh chips, and oncom Pasireungit. ANOVA analysis showed that there were differences of the superior agro-industrial products rank, that is Sumedang tofu, Cilembu roasted sweet potato, oncom Pasireungit, white bako mole, Cilembu sweet potato chips, tempeh chips, roasted coffee, ground coffee, red bako mole, and opak ketan.


2020 ◽  
Author(s):  
Carlos Galhano ◽  
Pedro Lamas ◽  
Diogo Seixas

The massive growth of the ceramic industry and the consequent demand for construction materials worldwide has motivated the search for alternative solutions aimed at reducing the use of mineral / natural resources as the main source of raw materials. One of the strategies frequently adopted by the scientific community is the reuse of industrial waste. It is beneficial not only to reduce the overexploitation of mineral resources but also to reduce the environmental, economic and social impacts resulting from their incorrect disposal/treatment and consequent deposition on land unsuitable or that purpose. Duetoconsiderationssuchasphysico-mechanical characteristics and the high production rate, two different types of industrial waste were selected for this work, ashes resulting from the burning of coal in thermoelectric power plant, commonly known as bottom ash (B), and the Marble Powder (MP). It was intended to test the technological feasibility of the manufacture of ceramic materials produced from clay mixtures containing these two residues. For this purpose, the fine fraction(<63μm)obtained from the sieving of the marbleresidue(MR)and slag(Bf)was used,aswellasacoarsergrainslagfractionrangingfrom63-125μm(Bg). The resulting test samples were subjected to a firing of 950 °C under an oxidizing atmosphere, following a primary drying process. Faced with the standard values, the new ceramic materials obtained from MP have seen their mechanical and porous characteristics decrease and increase, respectively. Atthesametime,althoughtheadditionofBinno way influenced the mechanical characteristics,a significant improvement the porous characteristic was observed. The incorporation of these residues produced a color very close to the original sample material. Keywords: industrial waste, ceramic, construction materials, bottom ash, Marble Powder


Sign in / Sign up

Export Citation Format

Share Document