scholarly journals Search for the Origin of Discrepancies in Osmotic Measurements of the PNIPAM - Water System

2017 ◽  
Vol 61 (1) ◽  
pp. 39 ◽  
Author(s):  
Enikő Manek ◽  
Etelka Tombácz ◽  
Erik Geissler ◽  
Krisztina László

Major, still unelucidated, inconsistencies exist in the literature among measurements of the thermodynamic properties of poly(N-isopropylacrylamide) (PNIPAM) solutions and gels. This paper looks for evidence of intrinsic ionic behaviour in cross-linked PNIPAM homopolymer hydrogels synthesized in water under standard conditions. Systematic measurements are made of the swelling and osmotic properties of lightly cross-linked PNIPAM hydrogels, as well as of their potentiometric titration and DSC response, over a wide range of pH and ionic strength conditions, in order to distinguish the effects of the latter two parameters on putative intrinsic ions. The intrinsic ion content of the gel is found to be vanishingly small, and consequently unlikely to be the source of the divergences among past measurements. By contrast, a major finding of this study is that comparison of the present results with the literature reveals that frustrated equilibrium can be a source of substantial discrepancies.


2021 ◽  
Vol 22 (2) ◽  
pp. 677
Author(s):  
Tausif Altamash ◽  
Wesam Ahmed ◽  
Saad Rasool ◽  
Kabir H. Biswas

Intracellular ionic strength regulates myriad cellular processes that are fundamental to cellular survival and proliferation, including protein activity, aggregation, phase separation, and cell volume. It could be altered by changes in the activity of cellular signaling pathways, such as those that impact the activity of membrane-localized ion channels or by alterations in the microenvironmental osmolarity. Therefore, there is a demand for the development of sensitive tools for real-time monitoring of intracellular ionic strength. Here, we developed a bioluminescence-based intracellular ionic strength sensing strategy using the Nano Luciferase (NanoLuc) protein that has gained tremendous utility due to its high, long-lived bioluminescence output and thermal stability. Biochemical experiments using a recombinantly purified protein showed that NanoLuc bioluminescence is dependent on the ionic strength of the reaction buffer for a wide range of ionic strength conditions. Importantly, the decrease in the NanoLuc activity observed at higher ionic strengths could be reversed by decreasing the ionic strength of the reaction, thus making it suitable for sensing intracellular ionic strength alterations. Finally, we used an mNeonGreen–NanoLuc fusion protein to successfully monitor ionic strength alterations in a ratiometric manner through independent fluorescence and bioluminescence measurements in cell lysates and live cells. We envisage that the biosensing strategy developed here for detecting alterations in intracellular ionic strength will be applicable in a wide range of experiments, including high throughput cellular signaling, ion channel functional genomics, and drug discovery.



1985 ◽  
Vol 16 (1) ◽  
pp. 1-10 ◽  
Author(s):  
V. P. Singh ◽  
C. Corradini ◽  
F. Melone

The geomorphological instantaneous unit hydrograph (IUH) proposed by Gupta et al. (1980) was compared with the IUH derived by commonly used time-area and Nash methods. This comparison was performed by analyzing the effective rainfall-direct runoff relationship for four large basins in Central Italy ranging in area from 934 to 4,147 km2. The Nash method was found to be the most accurate of the three methods. The geomorphological method, with only one parameter estimated in advance from the observed data, was found to be little less accurate than the Nash method which has two parameters determined from observations. Furthermore, if the geomorphological and Nash methods employed the same information represented by basin lag, then they produced similar accuracy provided the other Nash parameter, expressed by the product of peak flow and time to peak, was empirically assessed within a wide range of values. It was concluded that it was more appropriate to use the geomorphological method for ungaged basins and the Nash method for gaged basins.



2000 ◽  
Vol 122 (3) ◽  
pp. 147-152 ◽  
Author(s):  
Hui He ◽  
Mohamad Metghalchi ◽  
James C. Keck

A simple model has been developed to estimate the sensible thermodynamic properties such as Gibbs free energy, enthalpy, heat capacity, and entropy of hydrocarbons over a wide range of temperatures with special attention to the branched molecules. The model is based on statistical thermodynamic expressions incorporating translational, rotational and vibrational motions of the atoms. A method to determine the number of degrees of freedom for different motion modes (bending and torsion) has been established. Branched rotational groups, such as CH3 and OH, have been considered. A modification of the characteristic temperatures for different motion mode has been made which improves the agreement with the exact values for simple cases. The properties of branched alkanes up to 2,3,4,-trimthylpentane have been calculated and the results are in good agreement with the experimental data. A relatively small number of parameters are needed in this model to estimate the sensible thermodynamic properties of a wide range of species. The model may also be used to estimate the properties of molecules and their isomers, which have not been measured, and is simple enough to be easily programmed as a subroutine for on-line kinetic calculations. [S0195-0738(00)00902-X]



2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Omid Askari

Chemical composition and thermodynamics properties of different thermal plasmas are calculated in a wide range of temperatures (300–100,000 K) and pressures (10−6–100 atm). The calculation is performed in dissociation and ionization temperature ranges using statistical thermodynamic modeling. The thermodynamic properties considered in this study are enthalpy, entropy, Gibbs free energy, specific heat at constant pressure, specific heat ratio, speed of sound, mean molar mass, and degree of ionization. The calculations have been done for seven pure plasmas such as hydrogen, helium, carbon, nitrogen, oxygen, neon, and argon. In this study, the Debye–Huckel cutoff criterion in conjunction with the Griem’s self-consistent model is applied for terminating the electronic partition function series and to calculate the reduction of the ionization potential. The Rydberg and Ritz extrapolation laws have been used for energy levels which are not observed in tabulated data. Two different methods called complete chemical equilibrium and progressive methods are presented to find the composition of available species. The calculated pure plasma properties are then presented as functions of temperature and pressure, in terms of a new set of thermodynamically self-consistent correlations for efficient use in computational fluid dynamic (CFD) simulations. The results have been shown excellent agreement with literature. The results from pure plasmas as a reliable reference source in conjunction with an alternative method are then used to calculate the thermodynamic properties of any arbitrary plasma mixtures (mixed plasmas) having elemental atoms of H, He, C, N, O, Ne, and Ar in their chemical structure.



1984 ◽  
Vol 62 (8) ◽  
pp. 796-802 ◽  
Author(s):  
Maryse Mondat ◽  
A. Georgallas ◽  
D. A. Pink ◽  
M. J. Zuckermann

A theoretical model is presented with the intention of describing lateral phase separations in binary lipid mixtures in which the acyl chains of the components differ in their length. The model includes explicitly interactions between the acyl chains and between polar heads of the lipid molecules. Phase diagrams and thermodynamic properties of binary lipid mixtures were calculated using a wide range of interaction parameters. It is shown that the occurrence of immiscibility in the gel phase is related to the interactions between the polar heads of the lipid molecules. The calculated results for binary lipid mixtures are compared with the available experimental data. In particular, the calculated specific heat for dilauroyl phosphatidylcholine – distearoyl phosphatidylcholine is in reasonable agreement with experimental results obtained from differential scanning calorimetry measurements.



2018 ◽  
Vol 18 (2) ◽  
pp. 845-863 ◽  
Author(s):  
Andreas Kürten ◽  
Chenxi Li ◽  
Federico Bianchi ◽  
Joachim Curtius ◽  
António Dias ◽  
...  

Abstract. A recent CLOUD (Cosmics Leaving OUtdoor Droplets) chamber study showed that sulfuric acid and dimethylamine produce new aerosols very efficiently and yield particle formation rates that are compatible with boundary layer observations. These previously published new particle formation (NPF) rates are reanalyzed in the present study with an advanced method. The results show that the NPF rates at 1.7 nm are more than a factor of 10 faster than previously published due to earlier approximations in correcting particle measurements made at a larger detection threshold. The revised NPF rates agree almost perfectly with calculated rates from a kinetic aerosol model at different sizes (1.7 and 4.3 nm mobility diameter). In addition, modeled and measured size distributions show good agreement over a wide range of sizes (up to ca. 30 nm). Furthermore, the aerosol model is modified such that evaporation rates for some clusters can be taken into account; these evaporation rates were previously published from a flow tube study. Using this model, the findings from the present study and the flow tube experiment can be brought into good agreement for the high base-to-acid ratios (∼ 100) relevant for this study. This confirms that nucleation proceeds at rates that are compatible with collision-controlled (a.k.a. kinetically controlled) NPF for the conditions during the CLOUD7 experiment (278 K, 38 % relative humidity, sulfuric acid concentration between 1 × 106 and 3 × 107 cm−3, and dimethylamine mixing ratio of ∼ 40 pptv, i.e., 1 × 109 cm−3).



1970 ◽  
Vol 92 (3) ◽  
pp. 301-309 ◽  
Author(s):  
G. Angelino ◽  
E. Macchi

The computation of power cycles employing carbon dioxide as working fluid and extending down to the critical region requires the knowledge of the thermodynamic properties of CO2 within a wide range of pressures and temperatures. Available data are recognized to be insufficient or insufficiently accurate chiefly in the vicinity of the critical dome. Newly published density and specific heat measurements are employed to compute thermodynamic functions at temperatures between 0 and 50 deg C, where the need of better data is more urgent. Methods for the computation of thermal properties from density measurement in the low and in the high temperature range are presented and discussed. Results are reported of the computation of entropy and enthalpy of CO2 in the range 150–750 deg C and 40–600 atm. The probable precision of the tables is inferred from an error analysis based on the generation, by means of a computer program of a set of pseudoexperimental points which, treated as actual measurements, yield useful information about the accuracy of the calculation procedure.



2016 ◽  
Vol 78 (11) ◽  
Author(s):  
Amolkumar Narayan Jadhav ◽  
Gomathi N.

Clustering finds variety of application in a wide range of disciplines because it is mostly helpful for grouping of similar data objects together. Due to the wide applicability, different algorithms have been presented in the literature for segmenting large multidimensional data into discernible representative clusters. Accordingly, in this paper, Kernel-based exponential grey wolf optimizer (KEGWO) is developed for rapid centroid estimation in data clustering. Here, KEGWO is newly proposed to search the cluster centroids with a new objective evaluation which considered two parameters called logarithmic kernel function and distance difference between two top clusters. Based on the new objective function and the modified KEGWO algorithm, centroids are encoded as position vectors and the optimal location is found for the final clustering. The proposed KEGWO algorithm is evaluated with banknote authentication Data Set, iris dataset and wine dataset using four metrics such as, Mean Square Error, F-measure, Rand co-efficient and jaccord coefficient. From the outcome, we proved that the proposed KEGWO algorithm outperformed the existing algorithms.   



2000 ◽  
Vol 20 (2_suppl) ◽  
pp. 58-64 ◽  
Author(s):  
Frank A. Gotch

For hemodialysis, a large base of data shows the validity of modelling the dialysis dose and reliably estimating protein intake from equilibrated Kt/V urea (eKt/VU), the total dialyzer urea clearance provided during each treatment divided by the urea distribution volume. An eKt/VU of 1.05 thrice weekly is judged adequate, but is still under study. In continuous ambulatory peritoneal dialysis (CAPD), two dosage criteria are widely recognized: continuous (“standard”) Kt/VU (stdKt/VU = 2.0 weekly), and total creatinine (Cr) clearance normalized to body surface area (KCrT = 70 L/week/1.73 m2). The CANUSA study concluded that a stdKt/VU of 2.1 and a KCrT of 70 L/week/1.73 m2 gave equivalent clinical outcomes. The Dialysis Outcomes Quality Initiative (DOQI) recommends values of 2.0 and 60 L/ week/1.73 m2 respectively. An analysis of these two parameters for males and females over a wide range of body surface areas (BSAs) was done and the analysis showed: ( 1 ) The U and Cr dose criteria are incommensurable—that is, they can virtually never be achieved simultaneously in anephric patients. ( 2 ) The Cr criterion varies widely with the sex of the patient and with the BSA-dependent variation in stdKt/VU over a range of 2.1 to 3.0. ( 3 ) The U criterion always produces a KCrT < 60 L/week/1.73 m2 in females and 60 – 70 L/ week/1.73 m2 in males. With respect to U and Cr, the CANUSA results were concluded to be valid in patients with substantial residual renal function, but probably not applicable to anephric patients where the doses are clearly incommensurable.



Sign in / Sign up

Export Citation Format

Share Document