scholarly journals Shaking table test and time-history analysis of high-rise diagrid tube structure

Author(s):  
Chengqing Liu ◽  
Kaiqiang Ma ◽  
Xiaodan Wei ◽  
Guangjie He ◽  
Weixing Shi ◽  
...  
2014 ◽  
Vol 1065-1069 ◽  
pp. 1035-1041
Author(s):  
Si Tian Chen ◽  
Jie Xu ◽  
Hong Hui Xie

This paper is a seismic response study on a vertical irregular frame structure which has a cantilevered top floor. Aimed to analyze the features of seismic response for a vertical irregular frame and scaled model, dynamic time history analysis and shaking table test have been carried out by use of the earthquake waves recorded in WENHUAN earthquake. It shows that the results of dynamic time history analysis and shaking table test are in good agreement, and the earthquake influence coefficients obtained by dynamic time history analysis and shaking table test are larger than the value according to Code, which indicates that the results would be not secure if the simplified methods specified in Code only in the sight of the calculation of earthquake loads.


2011 ◽  
Vol 71-78 ◽  
pp. 2836-2839
Author(s):  
Hui Xia Xiong ◽  
Chang Yong Wang

The dynamic property of a high-rise building structure and time-history analysis under earthquake were analyzed by using the finite element program ANSYS. A modal analysis of the tower was conducted and the first 20 frequencies and modal shapes were obtained. The displacements and inner force under the earthquake were calculated. The result showed that the structural stiffness was enough to sustain earthquake load; and the stiffness distributed equally. These results can provide reliable basis for structural design.


2012 ◽  
Vol 204-208 ◽  
pp. 1215-1219
Author(s):  
Dai Guo Chen ◽  
Yong Yao ◽  
Hai Jun Wang ◽  
Yong Jun Deng ◽  
Jing Zhou

Using the finite element analysis software ANSYS to analyze the overall dynamic response of one specific high-rise steel-frame,including modal analysis, spectrum analysis and time-history analysis. Then do a comparative analysis with the results of calculation by the professional software PKPM. As the results: the structural calculation can use layer model; Larger mutations appeared in the stress of weak-story and the relevant story need to reinforce or set up supports under the anti-seismic design in the elastic time-history analysis of structure; Y-direction translation is preferentially happened in first order modal shape and lateral-torsional coupling happened in third order modal shape among the vibration mode analysis; The response spectrum analysis of frequent earthquake show that seismic action is more serious in ground layer.


2021 ◽  
pp. 115-123
Author(s):  
Yingjun Wang, Tianli Chen

In this paper, the application of equivalent simplified calculation model of isolated structure in super high-rise building is studied. In this paper, the characteristics of isolation structures with different height width ratio are analyzed, and the relationship curve between the limit value of height width ratio of isolation structure and the distance of isolation support is established. From the curve, we can estimate the limit height of the isolated structure when the bearing does not produce tensile stress under different seismic intensities. This paper also analyzes the influencing factors of the height width ratio limit, and puts forward the method of increasing the height width ratio limit. In this paper, a vertical stiffness correction model of isolation bearing is proposed. Compared with the shaking table test results and time history analysis, the modified model can truly reflect the mechanical properties of the isolation bearing.


2015 ◽  
Vol 9 (1) ◽  
pp. 861-866 ◽  
Author(s):  
Wang Yaohong ◽  
Wu Dingyan ◽  
Cao Wanlin

In this paper, two low-rise shear wall specimens are tested on the shaking table, one is shear wall with CFST frame and embedded steel-plate, the other one is no concrete outside the steel-plate in comparison of the first one. The reduced scale of the two specimens is 1/12. The seismic wave “Taft” is input in the shaking table test. Based on the experiment, the author conducts the time history analysis (including elastic stage and plastic stage) of the specimens. The calculated results and measured results are compared.


2019 ◽  
Vol 8 (4) ◽  
pp. 10624-10631

Shear walls play a key role in the lateral-load resistance process in high-rise buildings, as well as resisting the lateral loads generated by seismic forces. This paper examines the effect of shear walls in rectangular, L, and U type and their locations in RC building under seismic excitation. Seismic impact is primarily concerned with structural protection, particularly during the earthquake and also with high-rise buildings, ensuring adequate lateral rigidity to withstand seismic loads is very critical. Rectangular, L and U shaped shear walls was analyzed and compared at various location using non-linear analysis. For analysis three models were considered with various above said shapes at different locations of high rise buildings in high seismic regions of Ethiopia. The structure's seismic capacity and demand were analyzed using non-linear pushover analysis based on displacement. Regular in plane and elevation building for this investigation G+7 was targeted to estimate the structure's seismic response and resistance capacity Non-linear dynamic time-history analysis was performed for comparison, by applying 30 artificially generated ground motion for all sample buildings. The capacity curves of the structures, as derived by pushover analysis were compared for buildings with rectangular, L and U shape shear walls using Seismo-Struct software. Also, the performance levels of structures are estimated and compared using Seismo-Struct software to perform nonlinear dynamic time-history analysis.


Sign in / Sign up

Export Citation Format

Share Document