scholarly journals De-Programming Colorectal Cancer by Increase in Cholesterol Level

Complexities of cancers are representing another endless amount of new problems for the future development of novel treatments to prevent metastatic and secondary tumors. One of the biggest challenges in cancer treatment is the spread of cancer around the body, the metastasis. In many cases kills these secondary growths and not the original tumors. The main condition for secondary killers is given when cancer cells are able to break away from the primary place to travel around the organism and seed new tumors.

Complexities of cancers are representing another endless amount of new problems for the future development of novel treatments to prevent metastatic and secondary tumors. One of the biggest challenges in cancer treatment is the spread of cancer around the body, the metastasis. In many cases kills these secondary growths and not the original tumors. The main condition for secondary killers is given when cancer cells are able to break away from the primary place to travel around the organism and seed new tumors.


Author(s):  
Sonia Puri ◽  
Naveen Krishan Goel ◽  
Veenal Chadha ◽  
Praizy Bhandari

Vaccines have been used as a promising instrument over the years to combat the dreadful communicable diseases. But now owing to epidemiological transition as the burden of non-communicable diseases has increased, efforts are now being made globally to use this weapon for non-communicable diseases like cancer. Cancer vaccines belong to a class of substances known as “biological response modifiers”. These work by stimulating or restoring the immune system’s ability to fight infections and disease. There are two broad types of cancer vaccines: Preventive (or prophylactic) vaccines and Treatment or therapeutic vaccines. Cancer treatment vaccines are made up of cancer cells, parts of cells or pure antigens. Sometimes a patient’s own immune cells are removed and exposed to these substances in the lab to create the vaccine.  Cancer treatment vaccines differ from the vaccines that work against viruses. These vaccines try to get the immune system to mount an attack against cancer cells in the body. Instead of preventing disease, they are meant to get the immune system to attack a disease that already exists. Preventive vaccines are intended to prevent cancer from developing in healthy people.  And in fact, many evidence-based studies have proven the decrease in morbidity and mortality in various cancers by usage of some of the vaccines like cervical cancer vaccine etc. The biggest challenges currently facing preventive anti-cancer vaccines are clinical, social, and economic in nature.  This article is an effort to   highlight the advances in various cancer vaccines, so done, to use them on preventive and therapeutic front.


2014 ◽  
Vol 3 (2) ◽  
pp. 113-116
Author(s):  
Michelle Palmieri ◽  
Jayesh Desai ◽  
Oliver Sieber

2021 ◽  
Author(s):  
Boah Lee ◽  
Seung Ju Park ◽  
Seulgi Lee ◽  
Jinwook Lee ◽  
Eun Byeol Lee ◽  
...  

Autophagy is a biological process that maintains cellular homeostasis and regulates the internal cellular environment. Hyperactivating autophagy to trigger cell death has been a suggested therapeutic strategy for cancer treatment. Mechanistic target of rapamycin (mTOR) is a crucial protein kinase that regulates autophagy; therefore, using a structure-based virtual screen analysis, we identified lomitapide, a cholesterol-lowering drug, as a potential mTOR complex 1 (mTORC1) inhibitor. Our results showed that lomitapide directly inhibits mTORC1 in vitro and induces autophagy-dependent cancer cell death by decreasing mTOR signaling, thereby inhibiting the downstream events associated with increased LC3 conversion in various cancer cells (e.g., HCT116 colorectal cancer cells) and tumor xenografts. Lomitapide also significantly suppresses the growth and viability along with elevated autophagy in patient-derived colorectal cancer organoids. Furthermore, a combination of lomitapide and immune checkpoint blocking antibodies synergistically inhibits tumor growth in murine MC-38 or B16-F10 pre-clinical syngeneic tumor models. These results elucidates the direct, tumor-relevant immune-potentiating benefits of mTORC1 inhibition by lomitapide, which complement the current immune checkpoint blockade. This study highlights the potential repurposing of lomitapide as a new therapeutic option for cancer treatment.


2019 ◽  
Vol 9 (1-s) ◽  
pp. 384-386
Author(s):  
Xialin Chen

Nanotechnology is and will be the future of several fields and medicine is one of them. The use of nanoparticles in the treatment of psychotic and cancer problems is analyzed in this report. Psychotic treatment has been effective due to specific nanoparticles like haloperidol and RISP, and these combinations are linked with other nanoparticles to treat other diseases. Nanoparticles have extended applications with a high degree of effectiveness to treat cancer cells due to the quick delivery, and targeted process and the same is detailed in the review sheet. Oligonucleotides combined with nanoparticles have greater efficiencies. Keywords: Nanotechnology, drug targeting, cancer treatment


2021 ◽  
Vol 10 (3) ◽  
Author(s):  
Amaan Rather ◽  
Pavithran Ravindran

Synthetic immunology is a field in which researchers design constructs that will help immune cells battle pathogens, most commonly cancer cells. This is particularly crucial for human health due to the considerable number of ways that invaders (to the body) possess to minimize the effectiveness of the immune system. Frequently, these changes take place in the form of developing more advanced synthetic receptors for better recognition of pathogens so that T-cells can execute more precise functions in the body. Other changes are also made to give researchers more control over the advancements that have been inserted into the body, heightening the level of safety for the patients who receive them. Considering the newfound research that has been conducted, this paper focuses on the significance of upgrading various parts of the immune system in terms of the way that they can help protect the body. It also highlights the extensive potential this field has in the future considering the adaptability and functionality of the current, newly-designed systems in place.


2020 ◽  
Vol 40 (3) ◽  
Author(s):  
Bing-chen Chen ◽  
Shi-liang Tu ◽  
Bo-an Zheng ◽  
Quan-jin Dong ◽  
Zi-ang Wan ◽  
...  

Abstract Heat shock factor 1 (HSF1) is a powerful multifaceted oncogenic modifier that plays a role in maintaining the protein balance of cancer cells under various stresses. In recent studies, there have been reports of increased expression of HSF1 in colorectal cancer (CRC) cells, and the depletion of the HSF1 gene knockdown has inhibited colon cancer growth both in vivo and in vitro. Therefore, HSF1 is a promising target for colon cancer treatment and chemoprevention. In the present study, we found that Schizandrin A (Sch A) significantly inhibited the growth of CRC cell lines by inducing cell cycle arrest, apoptosis and death. Through HSE luciferase reporter assay and quantitative PCR (qPCR), we identified Sch A as a novel HSF1 inhibitor. In addition, Sch A could effectively inhibit the induction of HSF1 target proteins such as heat-shock protein (HSP) 70 (HSP70) and HSP27, whether in heat shock or normal temperature culture. In the Surface Plasmon Resonance (SPR) experiment, Sch A showed moderate affinity with HSF1, further confirming that Sch A might be a direct HSF1 inhibitor. The molecular docking and molecular dynamic simulation results of HSF1/Sch A suggested that Sch A formed key hydrogen bond and hydrophobic interactions with HSF1, which may contribute to its potent HSF1 inhibition. These findings provide clues for the design of novel HSF1 inhibitors and drug candidates for colon cancer treatment.


2019 ◽  
Vol 6 (2) ◽  
pp. 2983-2985
Author(s):  
Luyen Van Tran

Cancer is a serious pathological condition of abnormal cells are gathered in tumors in the body's tissues or organs. Due to their accelerated metabolism, cancer cells require a great demand for energy, protein (cell structure substrates), and metabolic enzyme activity. If the body does not respond adequately to this demand, the metabolic processes of cancer cells will be hampered, and their growth will be limited or even stopped. It is possible to control the metabolic processes of the cancerous tumors by performing one or more of the following approaches: stopping the energy and cell structure substrate supply, inhibiting enzymic activity, and/or destroying cancer cells with external agents (such as radiation and/or chemicals). These approaches have been investigated either in single or combination modes, but so far the results obtained have not been on par with expectations. In this paper, we propose a method of cancer treatment which entails the use of a radioisotope instead of stable metal to break down the structure of metal co-factor enzyme and to deactivate its catalytic function. With a judicious choice of the metal radioisotope, this method is even able to perform all the above-mentioned approaches, and at the same time, giving a much better efficacy in cancer treatment.  


2020 ◽  
Author(s):  
Marie Malier ◽  
Magali Court ◽  
Khaldoun Gharzeddine ◽  
Marie-Hélène Laverierre ◽  
Sabrina Marsili ◽  
...  

AbstractColon adenocarcinoma is characterized by an infiltration of tumor-associated macrophages (TAMs). TAMs are associated with a chemoresistance to 5-Fluorouracil (5-FU), but the mechanisms involved are still poorly understood. In the present study, we found that macrophages specifically overexpress dihydropyrimidine dehydrogenase (DPD) in hypoxia, leading to a macrophage-induced chemoresistance to 5-FU by inactivation of the drug. Macrophage DPD expression in hypoxia is translationally controlled by the cap-dependent protein synthesis complex eIF4FHypoxic, which includes HIF-2α. We discovered that TAMs constitute the main contributors to DPD activity in human colorectal primary or secondary tumors where cancer cells do not express significant levels of DPD. Together, these findings shed light on the role of TAMs in forming chemoresistance in colorectal cancers and offer the identification of new therapeutic targets. Additionally, we report that, contrary to what is found in humans, macrophages in mice do not express DPD.


Sign in / Sign up

Export Citation Format

Share Document