scholarly journals Application of Nanoparticles for Brain and Lung Cancer Therapeutics

2019 ◽  
Vol 9 (1-s) ◽  
pp. 384-386
Author(s):  
Xialin Chen

Nanotechnology is and will be the future of several fields and medicine is one of them. The use of nanoparticles in the treatment of psychotic and cancer problems is analyzed in this report. Psychotic treatment has been effective due to specific nanoparticles like haloperidol and RISP, and these combinations are linked with other nanoparticles to treat other diseases. Nanoparticles have extended applications with a high degree of effectiveness to treat cancer cells due to the quick delivery, and targeted process and the same is detailed in the review sheet. Oligonucleotides combined with nanoparticles have greater efficiencies. Keywords: Nanotechnology, drug targeting, cancer treatment

Cancers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 3790
Author(s):  
Gro Elise Rødland ◽  
Sissel Hauge ◽  
Grete Hasvold ◽  
Lilli T. E. Bay ◽  
Tine T. H. Raabe ◽  
...  

Inhibitors of WEE1 and ATR kinases are considered promising for cancer treatment, either as monotherapy or in combination with chemo- or radiotherapy. Here, we addressed whether simultaneous inhibition of WEE1 and ATR might be advantageous. Effects of the WEE1 inhibitor MK1775 and ATR inhibitor VE822 were investigated in U2OS osteosarcoma cells and in four lung cancer cell lines, H460, A549, H1975, and SW900, with different sensitivities to the WEE1 inhibitor. Despite the differences in cytotoxic effects, the WEE1 inhibitor reduced the inhibitory phosphorylation of CDK, leading to increased CDK activity accompanied by ATR activation in all cell lines. However, combining ATR inhibition with WEE1 inhibition could not fully compensate for cell resistance to the WEE1 inhibitor and reduced cell viability to a variable extent. The decreased cell viability upon the combined treatment correlated with a synergistic induction of DNA damage in S-phase in U2OS cells but not in the lung cancer cells. Moreover, less synergy was found between ATR and WEE1 inhibitors upon co-treatment with radiation, suggesting that single inhibitors may be preferable together with radiotherapy. Altogether, our results support that combining WEE1 and ATR inhibitors may be beneficial for cancer treatment in some cases, but also highlight that the effects vary between cancer cell lines.


Biosensors ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 40
Author(s):  
Mahek Sadiq ◽  
Lizhi Pang ◽  
Michael Johnson ◽  
Venkatachalem Sathish ◽  
Qifeng Zhang ◽  
...  

Major advances in cancer control can be greatly aided by early diagnosis and effective treatment in its pre-invasive state. Lung cancer (small cell and non-small cell) is a leading cause of cancer-related deaths among both men and women around the world. A lot of research attention has been directed toward diagnosing and treating lung cancer. A common method of lung cancer treatment is based on COX-2 (cyclooxygenase-2) inhibitors. This is because COX-2 is commonly overexpressed in lung cancer and also the abundance of its enzymatic product prostaglandin E2 (PGE2). Instead of using traditional COX-2 inhibitors to treat lung cancer, here, we introduce a new anti-cancer strategy recently developed for lung cancer treatment. It adopts more abundant omega-6 (ω-6) fatty acids such as dihomo-γ-linolenic acid (DGLA) in the daily diet and the commonly high levels of COX-2 expressed in lung cancer to promote the formation of 8-hydroxyoctanoic acid (8-HOA) through a new delta-5-desaturase (D5Di) inhibitor. The D5Di does not only limit the metabolic product, PGE2, but also promote the COX-2 catalyzed DGLA peroxidation to form 8-HOA, a novel anti-cancer free radical byproduct. Therefore, the measurement of the PGE2 and 8-HOA levels in cancer cells can be an effective method to treat lung cancer by providing in-time guidance. In this paper, we mainly report on a novel sensor, which is based on a newly developed functionalized nanomaterial, 2-dimensional nanosheets, or Ti3C2 MXene. The preliminary results have proven to sensitively, selectively, precisely, and effectively detect PGE2 and 8-HOA in A549 lung cancer cells. The capability of the sensor to detect trace level 8-HOA in A549 has been verified in comparison with the traditional gas chromatography–mass spectrometry (GC–MS) method. The sensing principle could be due to the unique structure and material property of Ti3C2 MXene: a multilayered structure and extremely large surface area, metallic conductivity, and ease and versatility in surface modification. All these make the Ti3C2 MXene-based sensor selectively adsorb 8-HOA molecules through effective charge transfer and lead to a measurable change in the conductivity of the material with a high signal-to-noise ratio and excellent sensitivity.


2019 ◽  
Vol 20 (18) ◽  
pp. 1255-1257 ◽  
Author(s):  
Marzia Del Re ◽  
Alfredo Addeo ◽  
Antonio Passaro ◽  
Iacopo Petrini ◽  
Ron HN van Schaik ◽  
...  

2021 ◽  
Vol 12 (5) ◽  
pp. 397-418
Author(s):  
Denish Bardoliwala ◽  
Ankit Javia ◽  
Saikat Ghosh ◽  
Ambikanandan Misra ◽  
Krutika Sawant

Despite tremendous research in targeted delivery and specific molecular inhibitors (gene delivery), cytotoxic drug delivery through inhalation has been seen as a core part in the treatment of the lung cancer. Inhalation delivery provides a high dose of the drug directly to the lungs without affecting other body organs, increasing the therapeutic ratio. This article reviews the research performed over the last several decades regarding inhalation delivery of various cancer therapeutics for the treatment of lung cancer. Nevertheless, pulmonary administration of nanocarrier-based cancer therapeutics for lung cancer therapy is still in its infancy and faces greater than expected challenges. This article focuses on the current inhalable nanocarrier-based drugs for lung cancer treatment.


2021 ◽  
Vol 15 (5) ◽  
pp. 1282-1284
Author(s):  
Moein Shaneh

Chemotherapy is a type of cancer treatment in which the lack of selective cytotoxicity often leads to intolerable side effects. Today, the use of medicinal plants is essential in treating cancer due to their fewer side effects. Lagenaria siceraria Standl is critical for cytotoxicity studies due to its polyphenolic, cucurbitacins, pectin, flavonoids, and saponin compounds. In this study, the cytotoxic effects of plant fruit extract were investigated on lung cancer cell lines. To this end, the hydroalcoholic extract of the plant fruit was initially prepared by the percolation method. Then, the effects of solutions containing samples with different concentrations (5000, 500, 1000, 100, 100, 250, 10, 1, 0.1μg.ml-1) were investigated by MTT assay on lung cancer cell line (A549). Cisplatin was considered as a positive control. Statistical calculations were carried out using Prism V.3 software to compare IC50, and the data were analyzed by analysis of variance (ANOVA) and t-test. The results indicated that the IC50 level of cisplatin anti-cancer drug, as a common drug in the market, is significantly lower than Lagenaria siceraria extract. However, the extract of this plant revealed a significant growth inhibitory effect on lung cancer cells. The results also showed that Lagenaria siceraria extract is an effective cytotoxic compound on lung cancer cells. More extensive studies are needed to find effective plant extracts compounds to find and design new and effective cancer treatment drugs. Keywords: Lagenaria siceraria, Cell line, Lung cancer, IC50, MTTassay


2017 ◽  
Vol 42 (3) ◽  
pp. 1063-1072 ◽  
Author(s):  
Yuan Ying ◽  
Liao Qingwu ◽  
Xue Mingming ◽  
Song Zhenju ◽  
Tong Chaoyang ◽  
...  

Background: Chemoresistance has become a an important worldwide problem to cancer treatment. Understanding the mechanism of drug resistance is the key to solve this problem and improve the survival of the patient. Doxorubicin and its analogues are widely used as antitumor drugs but many doxorubicin resistant cases have been identified in recent years. Doxorubicin (Dox) resistance is a very serious phenomenon in lung cancer treatment. As we could show previously, Shufeng Jiedu Capsule (SFJDC) can effectively reverse H69AR cells resistance to Dox, thus, the present study was designed to explore the mechanism underlying the effects of the main ingredient Emodin on chemosensitivity of H69AR cells to Dox. Methods: First, the growth inhibition rate of lung cancer cells and normal bronchial epithelial cells (BECs) was determined by MTT. Then, the resistance-induced epithelial-mesenchymal transition (EMT) of H69AR cells was examined by western blot and the effect of Emodin on Twist, Snail or Slug was assayed by Real-time PCR and Western blot. The activation of NF-kappa B was assayed by Western blot. Proliferation, apoptosis, migration and invasion of H69AR cells induced by Twist, Snail and Slug were also assayed by flow cytometry and transwell chamber. Results: The results showed that after administration of Dox (10µM) with different concentrations of Emodin, the cells exhibited a dose-dependent inhibition action to H69AR cells at 48 hours. H69AR induced the expression of Twist, Snail, and Slug when compared with Dox-sensitive H69 cells. The expression of Twist, Snail, and Slug can be effectively inhibited by combination of Dox and Emodin. The reversal of resistance was associated with the inhibition of NF-kappa B. Twist, Snail and Slug promoted proliferation, migration and invasion and inhibited apoptosis. Conclusion: Our data suggest that Emodin can effectively reverse the resistance of H69AR to Dox, an effect paralleled by inhibition of EMT, cell proliferation, apoptosis, migration and invasion.


Complexities of cancers are representing another endless amount of new problems for the future development of novel treatments to prevent metastatic and secondary tumors. One of the biggest challenges in cancer treatment is the spread of cancer around the body, the metastasis. In many cases kills these secondary growths and not the original tumors. The main condition for secondary killers is given when cancer cells are able to break away from the primary place to travel around the organism and seed new tumors.


Proceedings ◽  
2020 ◽  
Vol 60 (1) ◽  
pp. 29
Author(s):  
Mahek Sadiq ◽  
Lizhi Pang ◽  
Michael Johnson ◽  
Venkatachalem Sathish ◽  
Danling Wang

Major advances in cancer control can be greatly aided by early diagnosis and effective treatment in its pre-invasive state. Lung cancer (small cell and non-small cell) is a leading cause of cancer-related death among both men and women around the world. A lot of research attention has been attracted to diagnosing and treating lung cancer. A common method of lung cancer treatment is based on COX-2 (Cyclooxygenase-2) inhibitors. This is because COX-2 is commonly over expressed in lung cancer and also the abundance of its enzymatic product Prostaglandin E2 (PGE2). Instead of using traditional COX-2 inhibitors to treat lung cancer, here, we report a new anti-cancer strategy recently developed for lung cancer treatment. It adopts more abundant omega-6 (ω-6)fatty acids such as dihomo-γ-linolenic acid (DGLA) in the daily diet and the commonly high levels of COX expressed in lung cancer to promote the formation of 8-hydroxyoctanoic acid (8-HOA) through a new delta-5-desaturase (D5Di) inhibitor. The D5Di will not only limit the metabolic product, PGE2 but also promote the COX-2 catalyzed DGLA peroxidation to form 8-HOA, a novel anti-cancer free radical byproduct. Therefore, the measurement of the PGE2 and 8-HOA levels in cancer cells can be an effective method to treat lung cancer by providing in-time guidance. A novel sensor based on a newly developed functionalized nanomaterial, 2-dimensional nanosheets, Ti3C2 MXene, has proved to sensitively, selectively, precisely and effectively detect PGE2 and 8-HOA in A549 lung cancer cells. Due to the multilayered structure and extremely large surface area, metallic conductivity and easy and versatile in surface modification, Ti3C2 MXene-based sensor will be able to selectively adsorb different molecules through physical adsorption or electrostatic attraction, and lead to a measurable change in the conductivity of the material with high signal-to-noise ratio and excellent sensitivity.


2022 ◽  
pp. 237-258
Author(s):  
Sumira Malik ◽  
Shristi Kishore ◽  
Manisha Kumari ◽  
Archna Dhasmana

Nanoemulsions are pharmaceutical-based nanometres ranged nanoformulated particles with significant and valuable contribution in field of the nanotechnology. In cancer treatment, the treatment through drugs fails primarily due to multidrug resistance (MDR), poor solubility, and unspecific toxicity. Nanoemulsions have the remarkable properties of non-immunogenicity, biodegradability, sustained encapsulation of low water solubility drugs, sustained regulated release of drug, stable and safe carrying tendency to deliver such drugs, and specificity in targeting only cancer cells to overcome multidrug resistance through for clinical and therapeutic application. They excellently address the noncompliance issues associated with the conventional anti-cancerous chemotherapeutic dosage issues. Currently multifunctional nanoemulsions are under experimentation for the treatment of various types of cancer. The chapter highlights the current status and applications of nanoemulsions as anti-cancer therapeutics and their commercial importance.


Sign in / Sign up

Export Citation Format

Share Document