249. Tape-Lift Survey of Settled Dust in Non-Water-Damaged Homes

2003 ◽  
Author(s):  
L. Swenson ◽  
W. Geer ◽  
M. Krause ◽  
C. Robbins
Keyword(s):  
Author(s):  
Nadeem Ali ◽  
Nabil A. Alhakamy ◽  
Iqbal M. I. Ismail ◽  
Ehtisham Nazar ◽  
Ahmed Saleh Summan ◽  
...  

In this study, we measured the occurrence of organophosphate esters (OPEs) and phthalates in the settled dust (floor and air conditioner filter dust) and in suspended particulate matter (PM10) from different microenvironments (households (n = 20), offices (n = 10) and hotels (n = 10)) of Jeddah, Saudi Arabia. Bis (2-Ethylhexyl) phthalate (DEHP) was the major pollutant (contributing >85% of total chemicals burden) in all types of indoor dust with a concentration up to 3,901,500 ng g−1. While dibutyl phthalate (DBP) and DEHP together contributed >70% in PM10 (1900 ng m−3), which indicate PM10 as a significant source of exposure for DBP and DEHP in different Saudi indoor settings. Tris (1-chloro-2-propyl) phosphate (TCPP) was the major OPE in PM10 with a concentration of up to 185 ng m−3 and the occurrence of OPEs in indoor dust varied in studied indoor settings. The estimated daily intake (EDI) of studied chemicals via dust ingestion and inhalation of PM10 was below the reference dose (RfD) of individual chemicals. However, estimated incremental lifetime cancer risk (ILCR) with moderate risk (1.5 × 10−5) for Saudi adults and calculated hazardous index (HI) of >1 for Saudi children from DEHP showed a cause of concern to the local public health.


Pathogens ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 843
Author(s):  
(Aino) Maria A. Andersson ◽  
Johanna Salo ◽  
Raimo Mikkola ◽  
Tamás Marik ◽  
László Kredics ◽  
...  

Occupants may complain about indoor air quality in closed spaces where the officially approved standard methods for indoor air quality risk assessment fail to reveal the cause of the problem. This study describes a rare genus not previously detected in Finnish buildings, Acrostalagmus, and its species A. luteoalbus as the major constituents of the mixed microbiota in the wet cork liner from an outdoor wall. Representatives of the genus were also present in the settled dust in offices where occupants suffered from symptoms related to the indoor air. One strain, POB8, was identified as A. luteoalbus by ITS sequencing. The strain produced the immunosuppressive and cytotoxic melinacidins II, III, and IV, as evidenced by mass spectrometry analysis. In addition, the classical toxigenic species indicating water damage, mycoparasitic Trichoderma, Aspergillus section Versicolores, Aspergillus section Circumdati, Aspergillus section Nigri, and Chaetomium spp., were detected in the wet outdoor wall and settled dust from the problematic rooms. The offices exhibited no visible signs of microbial growth, and the airborne load of microbial conidia was too low to explain the reported symptoms. In conclusion, we suggest the possible migration of microbial bioactive metabolites from the wet outdoor wall into indoor spaces as a plausible explanation for the reported complaints.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Wan-Ru Wang ◽  
Nai-Tzu Chen ◽  
Nai-Yun Hsu ◽  
I-Ying Kuo ◽  
Hsin-Wen Chang ◽  
...  

Abstract Background Dysregulation of thymic stromal lymphopoietin (TSLP) expressions is linked to asthma and allergic disease. Exposure to phthalate esters, a widely used plasticizer, is associated with respiratory and allergic morbidity. Dibutyl phthalate (DBP) causes TSLP upregulation in the skin. In addition, phthalate exposure is associated with changes in environmentally induced DNA methylation, which might cause phenotypic heterogeneity. This study examined the DNA methylation of the TSLP gene to determine the potential mechanism between phthalate exposure and allergic diseases. Results Among all evaluated, only benzyl butyl phthalate (BBzP) in the settled dusts were negatively correlated with the methylation levels of TSLP and positively associated with children’s respiratory symptoms. The results revealed that every unit increase in BBzP concentration in the settled dust was associated with a 1.75% decrease in the methylation level on upstream 775 bp from the transcription start site (TSS) of TSLP (β =  − 1.75, p = 0.015) after adjustment for child’s sex, age, BMI, parents’ smoking status, allergic history, and education levels, PM2.5, formaldehyde, temperature; and relative humidity. Moreover, every percentage increase in the methylation level was associated with a 20% decrease in the risk of morning respiratory symptoms in the children (OR 0.80, 95% CI 0.65–0.99). Conclusions Exposure to BBzP in settled dust might increase children’s respiratory symptoms in the morning through decreasing TSLP methylation. Therefore, the exposure to BBzP should be reduced especially for the children already having allergic diseases.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chelsea Lennartz ◽  
Joel Kurucar ◽  
Stephen Coppola ◽  
Janice Crager ◽  
Johanna Bobrow ◽  
...  

AbstractInformation obtained from the analysis of dust, particularly biological particles such as pollen, plant parts, and fungal spores, has great utility in forensic geolocation. As an alternative to manual microscopic analysis of dust components, we developed a pipeline that utilizes the airborne plant environmental DNA (eDNA) in settled dust to estimate geographic origin. Metabarcoding of settled airborne eDNA was used to identify plant species whose geographic distributions were then derived from occurrence records in the USGS Biodiversity in Service of Our Nation (BISON) database. The distributions for all plant species identified in a sample were used to generate a probabilistic estimate of the sample source. With settled dust collected at four U.S. sites over a 15-month period, we demonstrated positive regional geolocation (within 600 km2 of the collection point) with 47.6% (20 of 42) of the samples analyzed. Attribution accuracy and resolution was dependent on the number of plant species identified in a dust sample, which was greatly affected by the season of collection. In dust samples that yielded a minimum of 20 identified plant species, positive regional attribution was achieved with 66.7% (16 of 24 samples). For broader demonstration, citizen-collected dust samples collected from 31 diverse U.S. sites were analyzed, and trace plant eDNA provided relevant regional attribution information on provenance in 32.2% of samples. This showed that analysis of airborne plant eDNA in settled dust can provide an accurate estimate regional provenance within the U.S., and relevant forensic information, for a substantial fraction of samples analyzed.


Author(s):  
Alan Hedge ◽  
William A. Erickson

A longitudinal self-report diary study of SBS cases and controls identified from buildingwide surveys of 4 office buildings is described. Self-report diaries were distributed to a total of 214 workers in the 4 buildings, and complete returns were obtained for 123 workers (57% return rate). Climate conditions (CO, CO2, formaldehyde, respirable dust mass (PM3.5) and particulate counts (0.3 μm, 0.5 μm, 1 μm, 5 μm), settled dust, air temperature, %RH, illuminance) were measured at each workstation. Ergonomic factors (observed work posture, office type, desk paper coverage, desk clutter, computer, mouse, keyboard tray, age of chair, chair arms, and plants, were measured at each workstation. Results showed no differences in prevailing climate conditions measured at case/control workstations. However, case reports of symptoms and environment conditions generally were worse than those for controls, and these reports showed periodicity, peaking late each day. The differences between reports by cases and controls generally remained consistent throughout the duration of the study.


Chemosphere ◽  
2016 ◽  
Vol 149 ◽  
pp. 62-69 ◽  
Author(s):  
Xiaoyu Liu ◽  
Zhishi Guo ◽  
Kenneth A. Krebs ◽  
Dale J. Greenwell ◽  
Nancy F. Roache ◽  
...  

DUST-BORNE TRACE GASES AND ODORANTS The analysis of dust-borne trace gases requires their i-solation from the dust particles. Procedures for the isolation and characterization of trace gases and odorants in the dust from pig houses are given by SCHAEFER et al. (29), HAMMOND et al.(30) and TRAVIS and ELLIOTT (31). Alcoholic solvents were found to be effective for the extraction of volatile fatty ac­ ids and phenols from the dust of hen (32) and pig houses (33), (34). Today, gas chromatography is usually used for the sepa­ ration and identification of the trace gases. Table IV gives a literature review of compounds identified in the dust of pig houses. There are only very few reports on investigations on the dust from hen houses (32). Most of the odours coming from livestock production units are associated with the biological degradation of the animal wastes (35), the feed and the body odour of the animals (1). Volatile fatty acids and phenolic compounds were found to con­ tribute mostly to the strong, typical odour of animal houses by the help of sensory evaluations parallel to the chemical analysis (29),(30). Table V gives quantitative values of volatile fatty acids and phenolic/indolic compounds found in the aerosol phase and in settled dust of piggeries, respectively. The results from the aerosol phase coincide, particularly as far as acetic acid is concerned. For the investigations of the settled dust the coefficients of variation (CV) and the relative values (%) characterizing the percentage of the single compounds as part of the total amount are quoted. The values are corrected with the dry matter content of the dust. Main components are acetic acid and p-cresol, respectively. Table VI compares results from air, dust and slurry in­ vestigations on VFA and phenolic/indolic compounds in piggeries. Relative values are used. When comparing the results derived from investigations on dust, air or slurry it is necessary to use relative values because of the different dimensions, for experience shows that in spite of large quantitative differ­ ences between two samples within the group of carboxylic acids and within the group of phenolic/indolic compounds the propor­ tions of the components remain rather stable (36). In the group of VFA acetic acid is the main component in air, dust, and slurry followed by propionic and butyric acid. The other three acids amount to less than 25%. In the group of phenols/ indoles p-cresol is the main component in the four cited in­ vestigations. However, it seems that straw bedding can reduce the p-cresol content; in this case phenol is the main compo­ nent , i nstead (37 ). 4. EMISSION OF DUST-BORNE VFA AND PHENOLS/INDOLES FROM PIGGERIES The investigations of dust from piggeries show that both VFA and phenols/indoles are present in a considerable amount. However, compared to the air-borne emissions calculated on the base of the results of LOGTENBERG and STORK (38) less than the tenth part (1/10) of phenols/indoles and about the hundredth part (1/100) of VFA are emitted by the dust, only. Table VII compares the dust-borne and air-borne emissions of VFA and


2007 ◽  
Vol 12 ◽  
pp. 51-57 ◽  
Author(s):  
A. A. Chudnovsky ◽  
E. Ben-Dor ◽  
H. Saaroni

Abstract. The influence of mineral and anthropogenic dust components on the VIS-NIR-SWIR spectral reflectance of artificial laboratory dust mixtures was evaluated and used in combination with Partial Least Squares (PLS) regression to construct a model that correlates the dust content with its reflectance. Small amounts of dust (0.018–0.33 mg/cm2) were collected using glass traps placed in different indoor environments in Tel Aviv, Israel during the spring and summer of 2005. The constructed model was applied to reflectance spectroscopy measurements derived from the field dust samples to assess their mineral content. Additionally, field samples were examined using Principal Component Analysis (PCA) to identify the most representative spectral pattern for each season. Across the visible range of spectra two main spectral shapes were observed, convex and concave, though spectra exhibiting hybrid shapes were also seen. Spectra derived from spring season dust samples were characterized mostly by a convex shape, which indicates a high mineral content. In contrast, the spectra generated from summer samples were characterized generally by a concave shape, which indicates a high organic matter content. In addition to this seasonal variation in spectral patterns, spectral differences were observed associated with the dwelling position in the city. Samples collected in the city center showed higher organic content, whereas samples taken from locations at the city margins, near the sea and next to open areas, exhibited higher mineral content. We conclude that mineral components originating in the outdoor environment influence indoor dust loads, even when considering relatively small amounts of indoor settled dust. The sensitive spectral-based method developed here has potentially many applications for environmental researchers and policy makers concerned with dust pollution.


Sign in / Sign up

Export Citation Format

Share Document