scholarly journals Anti-Dislipidemia Effectiveness Test of Turmeric Ethanol Extract (Curcuma Longa) in Male Wistar Mice Given a High-Fat Diet

2021 ◽  
Vol 4 (1) ◽  
pp. 43-55
Author(s):  
Wang Lei ◽  
Florenly ◽  
Liena ◽  
Fioni

Dyslipidemia is a condition of increasing levels of Low Density Lipoprotein (LDL), cholesterol in the blood, or triglycerides in the blood that can be accompanied by a decrease in levels of High Density Lipoprotein (HDL). Herbal products have been used since long ago in the medical world, one of which is curcuma longa root. The main compound of turmeric is curcumin which can lower cholesterol levels due to inhibiting cholesterol reabsorbtion from the outside and increase the enzyme HmgCoA reductase inhibitor so that fat synthesis can run properly. The purpose of this study was to find out the effectiveness of turmeric ethanol extract (Curcuma Longa) as an anti-dyslipidemia in male wistar rats given a high-fat diet. This experimental study with the pre-test and post-test group only control design approach was conducted in January 2021, at the Herbarium Medanese FMIPA USU. The size of the sample was calculated by Federer's formula, with at least 4 mice in each treatment group. The results and conclusions of turmeric ethanol (Curcuma Longa) III (150.20 ± 0.90 mg/dl) significantly decreased total cholesterol compared to the control group (177.50 ± 6.02mg/dl) (P value < 0.05). Turmeric ethanol extract (Curcuma Longa) III (110.00 (109-112) mg/dl) may significantly lower triglyceride levels compared to the control group (166.50 (160-175) mg/dl), (value P = 0.024). Turmeric ethanol extract (Curcuma Longa) III (66.50 ± 1.25 mg/dl) significantly lowered LDL levels compared to the control group (106.20 ± 3.50 mg/dl), (P value < 0.05). Turmeric ethanol extract (Curcuma Longa) III, (60.00 (59-61) mg/dl) can significantly increase HDL levels compared to the control group (27.00 (33-39) mg/dl), (Value P = 0.024). Turmeric ethanol extract (Curcuma Longa) III significantly lowered SGOT (Value = 0.024) and SGPT (Value P < 0.05) compared to the control group.

Author(s):  
Zhen-hong Xia ◽  
Wen-bo Chen ◽  
Li Shi ◽  
Xue Jiang ◽  
Ke Li ◽  
...  

Curcumin is the main secondary metabolites of Curcuma longa and other Curcuma spp, and has been reported to have some potential in preventing and treating some physiological disorders. This study investigated the effect curcumin in inhibiting high-fat diet and streptozotocin (STZ)-induced hyperglycemia and hyperlipidemia in rats. Twenty-six male Sprague-Dawley (SD) rats (170-190 g) were randomly divided into a standard food pellet diet group (Control group), a high-fat diet and streptozotocin group (HF+STZ group), and a high-fat diet combined with curcumin and STZ group (HF+ Cur +STZ group). Compared with the HF+STZ group, the HF+Cur+STZ group exhibited significantly reduced fasting blood glucose (FBG), total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), alanine aminotransferase (AST) and aspartate transaminase (ALT) levels, and liver coefficients; in the livers of these rats, the expression of malondialdehyde (MDA) and Bax was downregulated, whereas that of superoxide dismutase (SOD) and Bcl-2 was upregulated. Moreover, the liver histology of these rats was improved and resembled that of the control rats. These results suggest that curcumin prevents high-fat diet and STZ-induced hyperglycemia and hyperlipidemia, mainly via anti-oxidant and anti-apoptotic mechanisms in the liver.


Molecules ◽  
2020 ◽  
Vol 25 (2) ◽  
pp. 271 ◽  
Author(s):  
Zhen-Hong Xia ◽  
Wen-Bo Chen ◽  
Li Shi ◽  
Xue Jiang ◽  
Ke Li ◽  
...  

Curcumin is the main secondary metabolite of Curcuma longa and other Curcuma spp, and has been reported to have some potential in preventing and treating some physiological disorders. This study investigated the effect of curcumin in inhibiting high-fat diet and streptozotocin (STZ)-induced hyperglycemia and hyperlipidemia in rats. Twenty-six male Sprague-Dawley (SD) rats (170–190 g) were randomly divided into a standard food pellet diet group (Control group), a high-fat diet and streptozotocin group (HF + STZ group), and a high-fat diet combined with curcumin and STZ group (HF + Cur + STZ group). Compared with the HF + STZ group, the HF + Cur + STZ group exhibited significantly reduced fasting blood glucose (FBG), total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), alanine aminotransferase (AST), and aspartate transaminase (ALT) levels, as well as liver coefficients. In the livers of these rats, the expression of malondialdehyde (MDA) and Bax was downregulated, whereas that of superoxide dismutase (SOD) and Bcl-2 was upregulated. Moreover, the liver histology of these rats was improved and resembled that of the control rats. These results suggest that curcumin prevents high-fat diet and STZ-induced hyperglycemia and hyperlipidemia, mainly via anti-oxidant and anti-apoptotic mechanisms in the liver.


2020 ◽  
Vol 11 (1) ◽  
pp. 147-160
Author(s):  
Ranyah Shaker M. Labban ◽  
Hanan Alfawaz ◽  
Ahmed T. Almnaizel ◽  
Wail M. Hassan ◽  
Ramesa Shafi Bhat ◽  
...  

AbstractObesity and the brain are linked since the brain can control the weight of the body through its neurotransmitters. The aim of the present study was to investigate the effect of high-fat diet (HFD)-induced obesity on brain functioning through the measurement of brain glutamate, dopamine, and serotonin metabolic pools. In the present study, two groups of rats served as subjects. Group 1 was fed a normal diet and named as the lean group. Group 2 was fed an HFD for 4 weeks and named as the obese group. Markers of oxidative stress (malondialdehyde, glutathione, glutathione-s-transferase, and vitamin C), inflammatory cytokines (interleukin [IL]-6 and IL-12), and leptin along with a lipid profile (cholesterol, triglycerides, high-density lipoprotein, and low-density lipoprotein levels) were measured in the serum. Neurotransmitters dopamine, serotonin, and glutamate were measured in brain tissue. Fecal samples were collected for observing changes in gut flora. In brain tissue, significantly high levels of dopamine and glutamate as well as significantly low levels of serotonin were found in the obese group compared to those in the lean group (P > 0.001) and were discussed in relation to the biochemical profile in the serum. It was also noted that the HFD affected bacterial gut composition in comparison to the control group with gram-positive cocci dominance in the control group compared to obese. The results of the present study confirm that obesity is linked to inflammation, oxidative stress, dyslipidemic processes, and altered brain neurotransmitter levels that can cause obesity-related neuropsychiatric complications.


2019 ◽  
Vol 97 (7) ◽  
pp. 611-622 ◽  
Author(s):  
Mohammed M. Heikal ◽  
Ahmed A. Shaaban ◽  
Wagdi F. Elkashef ◽  
Tarek M. Ibrahim

Febuxostat, a highly potent xanthine oxidase inhibitor with an antioxidant effect, inhibits elevated xanthine oxidase, leading to reduction of reactive oxygen species and oxidative stress, the main causes of vascular inflammation in hyperlipidemia. The aim of this study was to test the potential antioxidant and anti-inflammatory effects of febuxostat and (or) stopping a high-fat diet on the biochemical parameters in rabbits with hyperlipidemia induced by a high-fat diet. Male New Zealand rabbits were distributed into 3 groups: a normal control group fed standard chow for 12 weeks and 2 other groups fed a high-fat diet with 1% cholesterol for 8 weeks, and then shifted to standard chow for 4 weeks. During the last 4 weeks, one high-fat diet group received 0.5% carboxymethyl cellulose, whereas the other group was treated with febuxostat (2 mg/kg per day p.o.). Febuxostat significantly lowered low-density lipoprotein cholesterol (“bad” cholesterol) compared to the untreated group (high-fat diet group). Febuxostat also displayed a potent anti-inflammatory and antioxidant activity by decreasing serum levels of lipid peroxidation index, proinflammatory cytokines, and enhancing antioxidant enzyme activity. Stopping the hyperlipidemic diet in the high-fat diet group did not show improvement. These findings indicate the antioxidant and anti-inflammatory effects of febuxostat that may be common mechanisms of the anti-hyperlipidemic effect of this drug. Stopping a hyperlipidemic diet without treatment is not sufficient once injury has occurred.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yuanli Chen ◽  
Jiamin Su ◽  
Yali Yan ◽  
Qian Zhao ◽  
Jialing Ma ◽  
...  

Atherosclerosis is a major pathology for cardiovascular diseases (CVDs). Clinically, the intermittent fasting (IF) has been observed to reduce the risk of CVDs. However, the effect of IF on the development of atherosclerosis has not been fully elucidated. Herein, we determined the protection of IF against high-fat diet–induced atherosclerosis in pro-atherogenic low-density lipoprotein receptor deficient (LDLR-/-) mice and the potentially involved mechanisms. The LDLR-/- mice were scheduled intermittent fasting cycles of 3-day HFD feeding ad libitum and 1 day fasting, while the mice in the control group were continuously fed HFD. The treatment was lasted for 7 weeks (∼12 cycles) or 14 weeks (∼24 cycles). Associated with the reduced total HFD intake, IF substantially reduced lesions in the en face aorta and aortic root sinus. It also increased plaque stability by increasing the smooth muscle cell (SMC)/collagen content and fibrotic cap thickness while reducing macrophage accumulation and necrotic core areas. Mechanistically, IF reduced serum total and LDL cholesterol levels by inhibiting cholesterol synthesis in the liver. Meanwhile, HFD-induced hepatic lipid accumulation was attenuated by IF. Interestingly, circulating Ly6Chigh monocytes but not T cells and serum c-c motif chemokine ligand 2 levels were significantly reduced by IF. Functionally, adhesion of monocytes to the aortic endothelium was decreased by IF via inhibiting VCAM-1 and ICAM-1 expression. Taken together, our study indicates that IF reduces atherosclerosis in LDLR-/- mice by reducing monocyte chemoattraction/adhesion and ameliorating hypercholesterolemia and suggests its potential application for atherosclerosis treatment.


Nutrients ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 269 ◽  
Author(s):  
Ji-Hyun Lee ◽  
Joo-Myung Moon ◽  
Yoon-Hee Kim ◽  
Bori Lee ◽  
Sang-Yong Choi ◽  
...  

Enzyme treatment of the foods and herbs has been used to improve the absorption rate the efficiency of plant extracts by converting the glycosides of the plant into aglycones. In this study, we examined the obesity-inhibitory effect of Chrysanthemum indicum Linné (CI) treated with enzymes such as viscozyme and tannase, which are highly efficient in converting glycosides to aglycones and then compared with untreated CI extract. The enzyme-treated CI ethanol extract (CIVT) was administered orally at various doses for 7 weeks in the high fat diet (HFD)-fed male mice. CIVT administration reduced the body weights, the food efficiency and the serum levels of lipid metabolism-related biomarkers, such as triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c) and leptin in the dose-dependent manner but not those high-density lipoprotein cholesterol (HDL-c) and adiponectin. CIVT also reduced considerably the total lipid amount in the liver and the size of adipocytes in the epididymal white adipose tissue (eWAT). CIVT effectively downregulated the adipogenesis-related transcription factors such as peroxisome proliferation activated receptor (PPAR)-γ and CCAAT/enhancer binding protein-α (C/EBP-α) but up-regulated PPAR-α, in the liver and eWAT. In addition, when compared to the enzyme-untreated CI 50% ethanol extract (CIEE), CIVT enhanced the reduction of body weight and lipid accumulation. Moreover, the viscozyme and tannase treatment of CI increased the flavonoid contents of the aglycone form. Therefore, our results support that the enzymatic treatment induced the production of aglycones for potentially suppressing the adipogenesis and lipid accumulation in HFD-fed mice. It suggests that CIVT might be an effective candidate for attenuating the over-weight and its related diseases.


2018 ◽  
Vol 13 (1) ◽  
pp. 379-384 ◽  
Author(s):  
Xia Qiu ◽  
Wenwen Zhong

AbstractThis study investigated the antihyperglycemic and antihyperlipidemic effects of low-molecular-weight carrageenan (LC) on rats fed a high-fat diet. Wistar rats were divided into five groups: normal control group (NC), high-fat diet control group (HC), carrageenan-treated control group (CC), 1% LC group (1% LC), and 3% LC-groups (3% LC). Body weight, food intake, fecal weight, blood glucose, and serum lipid levels were measured. After 30 days, body weight significantly decreased in the LC-treated groups than in the HC group. Moreover, in the LC-treated groups, postprandial blood glucose, total cholesterol, triglyceride, and low-density lipoprotein cholesterol (LDL-C) levels decreased, whereas high-density lipoprotein cholesterol (HDL-C) levels increased. From this study, our data suggest that LC has antihyperglycemic and hypolipidemic effects when compared to carrageenan, likely related to its increased absorption due to its lower molecular weight.


Foods ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 170 ◽  
Author(s):  
Wan-Sup Sim ◽  
Sun-Il Choi ◽  
Bong-Yeon Cho ◽  
Seung-Hyun Choi ◽  
Xionggao Han ◽  
...  

The antioxidant and anti-adipogenic activities of a mixture of Nelumbo nucifera L., Morus alba L., and Raphanus sativus were investigated and their anti-obesity activities were established in vitro and in vivo. Among the 26 different mixtures of extraction solvent and mixture ratios, ethanol extract mixture no. 1 (EM01) showed the highest antioxidant (α,α-Diphenyl-β-picrylhydrazyl, total phenolic contents) and anti-adipogenic (Oil-Red O staining) activities. EM01 inhibited lipid accumulation in 3T3-L1 adipocytes compared to quercetin-3-O-glucuronide. Furthermore, body, liver, and adipose tissue weights decreased in the high-fat diet (HFD)-EM01 group compared to in the high-fat diet control group (HFD-CTL). EM01 lowered blood glucose levels elevated by the HFD. Lipid profiles were improved following EM01 treatment. Serum adiponectin significantly increased, while leptin, insulin growth factor-1, non-esterified fatty acid, and glucose significantly decreased in the HFD-EM01 group. Adipogenesis and lipogenesis-related genes were suppressed, while fat oxidation-related genes increased following EM01 administration. Thus, EM01 may be a natural anti-obesity agent.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 165
Author(s):  
Aziza Alrafiah

High-fat diet (HFD) is a major problem causing neuronal damage. Thymoquinone (TQ) could regulate oxidative stress and the inflammatory process. Hence, the present study elucidated the significant role of TQ on oxidative stress, inflammation, as well as morphological changes in the cerebellum of rats with HFD. Rats were divided into three groups as (1) control, (2) saturated HFD for eight weeks and (3) HFD supplementation (four weeks) followed by TQ 300 mg/kg/day treated (four weeks). After treatment, blood samples were collected to measure oxidative stress markers glutathione (GSH), malondialdehyde (MDA), superoxide dismutase (SOD), and inflammatory cytokines. Furthermore, neuronal morphological changes were also observed in the cerebellum of the rats. HFD rats show higher body weight (286.5 ± 7.4 g) as compared with the control group (224.67 ± 1.78 g). TQ treatment significantly (p < 0.05) lowered the body weight (225.83 ± 13.15 g). TQ produced a significant (p < 0.05) reduction in cholesterol, triglycerides, high-density lipoprotein (HDL), and low-density lipoprotein (LDL). The antioxidative enzymes significantly reduced in HFD rats (GSH, 1.46 ± 0.36 mol/L and SOD, 99.13 ± 5.41 µmol/mL) as compared with the control group (GSH, 6.25 ± 0.36 mol/L and SOD, 159.67 ± 10.67 µmol/mL). MDA was increased significantly in HFD rats (2.05 ± 0.25 nmol/L) compared to the control group (0.695 ± 0.11 nmol/L). Surprisingly, treatment with TQ could improve the level of GSH, MDA, and SOD. TQ treatment significantly (p < 0.05) reduced the inflammatory markers as compared with HFD alone. TQ treatment minimizes neuronal damage as well as reduces inflammation and improves antioxidant enzymes. TQ can be considered as a promising agent in preventing the neuronal morphological changes in the cerebellum of obese populations.


Author(s):  
Supattra Prom-in ◽  
Jasadee Kaewsrichan ◽  
Nuntika Wangpradit ◽  
Chua Kien Hui ◽  
Mohamad Fairuz Yahaya ◽  
...  

Okra peel exhibits numerous therapeutic effects. This study explores the potential ameliorative effects of okra peel powder on high-fat-diet (HFD)-induced hypercholesterolemia and cognitive deficits. Thirty-six C57BL/6J male mice were randomly divided into six groups (n = 6 per group): (i) control, mice fed with a normal diet; (ii) HFD, mice fed with HFD; (iii) HFD-SIM, mice fed with HFD and given simvastatin (20 mg/kg/day); (iv) HFD-OP1; (v) HFD-OP2; (vi) HFD-OP3, mice fed with HFD and okra peel (200, 400, or 800 mg/kg/day, respectively). Following 10 weeks of treatments, the mice were subjected to the Morris water maze (MWM). Parameters such as weekly average body weight, food intake, and blood lipid profiles were also recorded. The HFD group showed a profound increase in total cholesterol and low-density lipoprotein concentration compared to the control group. All okra-treated and HFD-SIM groups performed better than the HFD group during acquisition trials, whereas only the HFD-OP1 produced a significantly higher number of entries into the platform zone during the probe trial. In sum, all three okra doses improved the learning ability of the mice. However, only the lowest dose of okra significantly improved the spatial reference memory retention.


Sign in / Sign up

Export Citation Format

Share Document