scholarly journals In-silico Studies on Virulence Factors of Cryptococcus Species: Phylogenetic Analysis and B-cell Epitope Prediction

2021 ◽  
Vol 11 (6) ◽  
pp. 14775-14793

Virulence proteins ensure the survival of Cryptococcus in its host. The epitopes present in these virulence factors can modulate the host's immune system and contribute tocryptococcosis's pathobiology significantly. The amino acid sequences of virulence factors (glucuronoxylomannan (GXM), superoxide dismutase (SOD), mannoprotein (MP), urease, CAP binding protein, galactoxylomannan (GalXM), phospholipase-B, and laccase) of C. neoformans, C. n. grubii, and C. gattii were retrieved from NCBI. Analyses of the phylogenetic relationship between virulence factors were performed by using PhyML software and JMP 13.1 software. Further, ABCpred, BCPred, BcePred web servers were employed for the prediction of linear B-cell epitopes in amino acid sequences of said virulence factors. In all the three Cryptococcus species, laccase, CAP binding protein, and mannoprotein were highly conserved compared to GalXM, GXM, and SOD virulence factors. Superoxide dismutase (SOD) with the lowest gamma distribution value is considered to be highly adaptable. Further, the maximum number of B-cell epitopes was observed on the urease of C. n. grubii. In due course of time, Cu, Zn Superoxide dismutase (SOD) might play the main role in Cryptococcus species' pathogenicity due to its highly variable nature. Additionally, urease could be used to design epitope-based anti-cryptococcal drugs. Nonetheless, the results of this in-silico study need wet lab validation.

1999 ◽  
Vol 67 (5) ◽  
pp. 2284-2291 ◽  
Author(s):  
Banani Banerjee ◽  
Paul A. Greenberger ◽  
Jordan N. Fink ◽  
Viswanath P. Kurup

ABSTRACT Asp f 2 is a major Aspergillus fumigatus allergen involved in allergic bronchopulmonary aspergillosis. Knowledge of the B-cell epitopes may contribute to the understanding of immunoregulation and immunodiagnosis. To elucidate the immunoglobulin E (IgE) binding epitopes in the linear sequence of Asp f 2, we synthesized decamer peptides spanning the whole molecule of Asp f 2 on derivatized cellulose membranes and evaluated IgE binding in ABPA patient and control sera. Peptides three to five amino acids long were synthesized based on amino acid sequences within the IgE binding regions and evaluated for the specificity of epitope antibody interactions. Nine IgE binding regions were recognized in this protein of 268 amino acid residues. Of the nine epitopes, seven (ATQRRQI, RKYFG, HWR, YTTRR, DHFAD, ALEAYA, and THEGGQ) are present in the hydrophilic regions of Asp f 2. Immunologic evaluation of the three recombinant fragments, Asp f 2A encompassing the N-terminal epitope region, Asp f 2B without N- and C-terminal regions of the protein, and Asp f 2C representing C-terminal epitopes, revealed that either the N- or C-terminal region of the protein is essential for the correct folding and conformation for IgE antibody binding.


2020 ◽  
Vol 14 (3) ◽  
pp. 235-246
Author(s):  
Sara Abdollahi ◽  
Mohammad H. Morowvat ◽  
Amir Savardashtaki ◽  
Cambyz Irajie ◽  
Sohrab Najafipour ◽  
...  

Background: Arginine deiminase is a bacterial enzyme, which degrades L-arginine. Some human cancers such as hepatocellular carcinoma (HCC) and melanoma are auxotrophic for arginine. Therefore, PEGylated arginine deiminase (ADI-PEG20) is a good anticancer candidate with antitumor effects. It causes local depletion of L-arginine and growth inhibition in arginineauxotrophic tumor cells. The FDA and EMA have granted orphan status to this drug. Some recently published patents have dealt with this enzyme or its PEGylated form. Objective: Due to increasing attention to it, we aimed to evaluate and compare 30 arginine deiminase proteins from different bacterial species through in silico analysis. Methods: The exploited analyses included the investigation of physicochemical properties, multiple sequence alignment (MSA), motif, superfamily, phylogenetic and 3D comparative analyses of arginine deiminase proteins thorough various bioinformatics tools. Results: The most abundant amino acid in the arginine deiminase proteins is leucine (10.13%) while the least amino acid ratio is cysteine (0.98%). Multiple sequence alignment showed 47 conserved patterns between 30 arginine deiminase amino acid sequences. The results of sequence homology among 30 different groups of arginine deiminase enzymes revealed that all the studied sequences located in amidinotransferase superfamily. Based on the phylogenetic analysis, two major clusters were identified. Considering the results of various in silico studies; we selected the five best candidates for further investigations. The 3D structures of the best five arginine deiminase proteins were generated by the I-TASSER server and PyMOL. The RAMPAGE analysis revealed that 81.4%-91.4%, of the selected sequences, were located in the favored region of arginine deiminase proteins. Conclusion: The results of this study shed light on the basic physicochemical properties of thirty major arginine deiminase sequences. The obtained data could be employed for further in vivo and clinical studies and also for developing the related therapeutic enzymes.


Author(s):  
Kiptiyah Kiptiyah ◽  
Widodo Widodo ◽  
Gatot Ciptadi ◽  
Aulanni’am Aulanni’Am ◽  
Mohammad A. Widodo ◽  
...  

AbstractBackgroundWe investigated whether 10-gingerol is able to induce oxidative stress in cumulus cells.MethodsFor the in-vitro research, we used a cumulus cell culture in M199, containing 10-gingerol in various concentrations (0, 12, 16, and 20 µM), and detected oxidative stress through superoxide dismutase (SOD) activity and malondialdehyde (MDA) concentrations, with incubation periods of 24, 48, 72, and 96 h. The obtained results were confirmed by in-silico studies.ResultsThe in-vitro data revealed that SOD activity and MDA concentration increased with increasing incubation periods: SOD activity at 0 µM (1.39 ± 0.24i), 12 µM (16.42 ± 0.35ab), 16 µM (17.28 ± 0.55ab), 20 µM (17.81 ± 0.12a), with a contribution of 71.1%. MDA concentration at 0 µM (17.82 ± 1.39 l), 12 µM (72.99 ± 0.31c), 16 µM (79.77 ± 4.19b), 20 µM (85.07 ± 2.57a), with a contribution of 73.1%. Based on this, the in-silico data uncovered that 10˗gingerol induces oxidative stress in cumulus cells by inhibiting HTR1A functions and inactivating GSK3B and AKT˗1.Conclusions10-gingerol induces oxidative stress in cumulus cells through enhancing SOD activity and MDA concentration by inhibiting HTR1A functions and inactivating GSK3B and AKT˗1.


Author(s):  
Shahab Mahmoudvand ◽  
Somayeh Shokri ◽  
Manoochehr Makvandi ◽  
Reza Taherkhani ◽  
Mohammad Rashno ◽  
...  

1995 ◽  
Vol 311 (2) ◽  
pp. 407-415 ◽  
Author(s):  
W C Buhi ◽  
I M Alvarez ◽  
V M Shille ◽  
M J Thatcher ◽  
J P Harney ◽  
...  

A major canine endometrial secreted protein (cP6, 23,000-M(r)) was purified by ion-exchange and gel-filtration chromatography and characterized by two-dimensional gel electrophoresis. Anti-[human retinol-binding protein (hRBP)] serum identified cP6 on immunoblot analysis and immunoprecipitated cP6 from culture medium. This major protein was also shown to bind [3H]retinol. N-terminal and internal amino acid sequences were determined and compared with previously identified protein, RNA, or DNA sequences. N-terminal analysis revealed that cP6 had high identity and similarity to serum retinol-binding proteins (RBPs), while internal sequence analysis showed a strong similarity to rat androgen-dependent epididymal protein and beta-lactoglobulins. Amino acid analysis, however, showed significant differences between these proteins and cP6 in both total amino acid content and certain selected amino acids. Immunohistochemical analysis showed staining for RBP only in the uterine luminal epithelium. These studies suggest that bitch endometrium secretes a family of proteins (cP6), some of which bind [3H]retinol, are immunologically related to the RBP family, and have N-terminal and internal sequences with a high similarity to RBP, beta-lactoglobulins and other members of the lipocalin family. This family of proteins may be important in early development for supplying retinol or derivatives to the developing embryo.


Amino Acids ◽  
2007 ◽  
Vol 33 (3) ◽  
pp. 423-428 ◽  
Author(s):  
J. Chen ◽  
H. Liu ◽  
J. Yang ◽  
K.-C. Chou

Development ◽  
1999 ◽  
Vol 126 (18) ◽  
pp. 4077-4086 ◽  
Author(s):  
W. Hampe ◽  
J. Urny ◽  
I. Franke ◽  
S.A. Hoffmeister-Ullerich ◽  
D. Herrmann ◽  
...  

The neuropeptide head activator plays an important role for proliferation and determination of stem cells in hydra. By affinity chromatography a 200 kDa head-activator binding protein, HAB, was isolated from the multiheaded mutant of Chlorohydra viridissima. Partial amino acid sequences were used to clone the HAB cDNA which coded for a receptor with a unique alignment of extracellular modules, a transmembrane domain, and a short carboxy-terminal cytoplasmic tail. A mammalian HAB homologue with identical alignment of these modules is expressed early in brain development. Specific antibodies revealed the presence of HAB in hydra as a transmembrane receptor, but also as secreted protein, both capable of binding head activator. Secretion of HAB during regeneration and expression in regions of high determination potential hint at a role for HAB in regulating the concentration and range of action of head activator.


2000 ◽  
Vol 68 (7) ◽  
pp. 3941-3948 ◽  
Author(s):  
Tong-Soo Kim ◽  
Younghun Jung ◽  
Byoung-Kuk Na ◽  
Ki-Sun Kim ◽  
Pyung-Rim Chung

ABSTRACT The cytosolic superoxide dismutase (SOD) of Fasciola hepatica, a causative agent of fascioliasis, was purified and characterized. The enzyme consists of two identical subunits, each with an apparent molecular mass of 17.5 kDa. An analysis of the enzyme's primary structure and inhibition studies revealed that the enzyme is a copper/zinc-containing SOD (Cu/Zn-SOD). The enzyme activity was relatively stable in a broad pH range, from pH 7.0 to 10.0, and the enzyme showed maximum activity at pH 7.5. This enzyme also displayed strong antigenicity against sera of bovine and human subjects with fascioliasis. The SOD gene fragment was amplified by PCR with degenerate oligonucleotide primers derived from amino acid sequences conserved in the Cu/Zn-SODs of other organisms. An F. hepatica cDNA library was screened with the SOD gene fragment as a probe. As a result, a complete gene encoding the Cu/Zn-SOD was identified, and its nucleotide sequence was determined. The gene had an open reading frame of 438 bp and 146 deduced amino acids. Comparison of the deduced amino acid sequence of the enzyme with previously reported Cu/Zn-SOD amino acid sequences revealed considerably high homologies. The coding region of the F. hepatica Cu/Zn-SOD was cloned and expressed in Escherichia coli. Staining of native polyacrylamide gel for SOD activity of the expressed protein revealed SOD activity that was inactivated by potassium cyanide and hydrogen peroxide but not by sodium azide. This means that the presence of the recombinant fusion protein is indicative of Cu/Zn-SOD. The expressed protein also reacted with sera of bovine and human subjects with fascioliasis, but it did not react with sera of uninfected bovine and human subjects.


Sign in / Sign up

Export Citation Format

Share Document