scholarly journals Green Synthesis of Copper Oxide Nanoparticles Mediated by Aqueous Leaf Extracts of Leucas aspera and Morinda tinctoria

2021 ◽  
Vol 10 (4) ◽  
pp. 2706-2714

Copper oxide nanoparticles were successfully synthesized using the aqueous leaf extracts of Leucas aspera and Morinda tinctoria plant material with copper sulfate (CuSO4.5H2O) as the precursor. The crystalline nature and morphology of the synthesized sample were identified using XRD and SEM analytical instrumentation and found that the crystal was in the monoclinic phase, and the average particle size was estimated as 30.32nm and 18.72nm for both the samples. The functional groups were identified using FTIR spectroscopy, and the strong absorption peak at 620 cm-1 and 615cm-1 confirms the presence of Cu-O vibration. The optical bandgap of the plant leaf extract mediated CuO particles was calculated based on the results obtained from UV-Vis spectroscopy and found that the value of the energy gap is 5.6eV and 3.16eV. The antibacterial activity of plant samples was carried out by the disc diffusion method. The test compounds' concentrations were taken in DMSO and used in the concentration of 500 µg and 1000 µg /disc. The zone of inhibition formed by the prepared CuO nanoparticles was good and compared with Amikacin's standard value. The study reports the plant leaf extract mediated CuO nanoparticles might find suitable application in the field of nanotechnology.

2021 ◽  
Vol 20 (2) ◽  
pp. 1-6
Author(s):  
Fatma A. Shtewi ◽  
Wedad M. Al-Adiwish ◽  
Hamid A. Alqamoudy ◽  
Awatif A. Tarroush

Copper oxide nanoparticles are essential technology materials that are utilized as catalysts in the chemical industry, as well as in photonic and electronic devices and medical applications. Due to their applications in advanced technologies, we have concentrated on the production of CuO nanoparticles using enhanced, cost-effective, and environmentally friendly synthetic techniques. In this paper, we have presented a green synthesis technique to successfully synthesis copper oxide nanoparticles (CuO NPs) utilizing copper (II) sulfate pentahydrate (CuSO4.5H2O) as precursor salt and Mentha Piperita leaf extract as a reducing and stabilizing agent during the synthesis process. The precursor salt solution and reducing agent were mixed in a 1:1 volume ratio at 50 °C. The CuO NPs synthesized were confirmed by the characteristics Surface Plasmon Resonance (SPR) peak in the UV-visible region. Also, the optical direct band gap energy of the CuO NPs determined from the Tauc plot was 3.26 eV. The FTIR spectrum analysis confirmed existence of functional groups of polyphenols from Mentha piperita L. leaf extract, which are responsible for the reduction of Cu2+ ions and effective stabilization of CuO NPs. All the peaks observed in the XRD pattern revealed the production of CuO NPs having monoclinic structure with an average crystallite size of 42.51 nm. The surface morphology of the CuO nanoparticles was detected using SEM analysis. Further, the synthesis mechanism of CuO NPs has also been investigated.


2020 ◽  
Vol 44 (33) ◽  
pp. 14095-14102
Author(s):  
Arunkumar Lagashetty ◽  
Sangappa K. Ganiger ◽  
Preeti R. K. ◽  
Shashidhar Reddy ◽  
Malathesh Pari

Synthesis of metal oxide nanoparticles by reduction with plant leaf extract is an eco-friendly method.


2021 ◽  
pp. 1-40
Author(s):  
Taynara Basso Vidovix ◽  
Heloise Beatriz Quesada ◽  
Rosângela Bergamasco ◽  
Marcelo Fernandes Vieira ◽  
Angélica Marquetotti Salcedo Vieira

Author(s):  
Shivani Kushwaha

Abstract: Nanotechnology is a rising field of science and technology that deals with the particles having size in the range of 1 to 100 nm. Copper oxide nanoparticles has many properties like antifungal activity, antibacterial activity, optical properties, conductive properties, etc. Due to its demand of diversified use, copper oxide nanoparticles were fabricated using ecofriendly and non-toxic Annona muricata stem extract. The extract with copper sulphate pentahydrate showed gradual change in the colour of the extract from brown to green which indicates the CuO nanoparticles synthesis. The fabrication is followed by characterization of CuO nanoparticles using UV-vis spectroscope, FTIR, XRD and SEM. The characterization showed roughly spherical shaped nanoparticles in the range of 100nm with high crystalline monoclinic phase. FTIR absorption spectra conclude that the compounds attached with copper oxide nanoparticles could be polyphenols with aromatic ring. The CuO nanoparticles exhibited antibacterial activity; it showed the maximum activity against E.coli (18 mm). Keywords: Annona muricata, copper sulphate pentahydrate, FTIR, nanomaterials, SEM, XRD.


2016 ◽  
Vol 3 (2) ◽  
pp. 365-374 ◽  
Author(s):  
Amaraporn Wongrakpanich ◽  
Imali A. Mudunkotuwa ◽  
Sean M. Geary ◽  
Angie S. Morris ◽  
Kranti A. Mapuskar ◽  
...  

The increasing use of copper oxide (CuO) nanoparticles (NPs) in medicine and industry demands an understanding of their potential toxicities.


2014 ◽  
Vol 38 (9) ◽  
pp. 4267-4274 ◽  
Author(s):  
Manoj Trivedi ◽  
Sanjeev kumar Ujjain ◽  
Raj Kishore Sharma ◽  
Gurmeet Singh ◽  
Abhinav Kumar ◽  
...  

A cyano-bridged Cu(ii)–Cu(i) complex was synthesized and transformed into CuO nanoparticles. Their catalytic activity in C–N, C–O, and C–S cross-coupling reactions was explored.


Sign in / Sign up

Export Citation Format

Share Document