scholarly journals Protective Effect of Fruit Juices on Zn Nanoparticles Induced Toxicity

2020 ◽  
Vol 2 (1) ◽  
pp. 54

Nanotoxicology refers to the study of the interaction of nanostructure with a biological system with an emphasis on elucidating the relationship between the physical and chemical properties of nanostructure with the induction of toxic biological responses. In this study, an attempt has been made to understand the protective effect of fruit juices on the reduction of ZnO nanoparticle-induced toxicity. Zinc oxide nanoparticles were synthesized by chemical reaction of zinc nitrate with sodium hydroxide as the reducer. Synthesized nanoparticles were characterized by suitable analytical techniques. UV-Vis spectroscopy study reveals the Plasmon absorption maxima at 200-600 nm, and X-ray diffraction and Atomic Force Microscopic analyses revealed the highly stable nanoparticles. Nanoparticles coated fruit juices was confirmed by changes or shift in the absorption spectra. Phytotoxicity studies indicated that the fruit juices coated zinc oxide nanoparticles were not inducing any effect on seedling emergence and plant growth. Cytotoxicity studies using RAW 264.7 cell lines were done by MTT Assay, where the IC50 values.

2015 ◽  
Vol 6 ◽  
pp. 1568-1579 ◽  
Author(s):  
Zitao Zhou ◽  
Jino Son ◽  
Bryan Harper ◽  
Zheng Zhou ◽  
Stacey Harper

Zinc oxide nanoparticles (ZnO NPs) are widely used in a variety of products, thus understanding their health and environmental impacts is necessary to appropriately manage their risks. To keep pace with the rapid increase in products utilizing engineered ZnO NPs, rapid in silico toxicity test methods based on knowledge of comprehensive in vivo and in vitro toxic responses are beneficial in determining potential nanoparticle impacts. To achieve or enhance their desired function, chemical modifications are often performed on the NPs surface; however, the roles of these alterations play in determining the toxicity of ZnO NPs are still not well understood. As such, we investigated the toxicity of 17 diverse ZnO NPs varying in both size and surface chemistry to developing zebrafish (exposure concentrations ranging from 0.016 to 250 mg/L). Despite assessing a suite of 19 different developmental, behavioural and morphological endpoints in addition to mortality in this study, mortality was the most common endpoint observed for all of the ZnO NP types tested. ZnO NPs with surface chemical modification, regardless of the type, resulted in mortality at 24 hours post-fertilization (hpf) while uncoated particles did not induce significant mortality until 120 hpf. Using eight intrinsic chemical properties that relate to the outermost surface chemistry of the engineered ZnO nanoparticles, the highly dimensional toxicity data were converted to a 2-dimensional data set through principal component analysis (PCA). Euclidean distance was used to partition different NPs into several groups based on converted data (score) which were directly related to changes in the outermost surface chemistry. Kriging estimations were then used to develop a contour map based on mortality data as a response. This study illustrates how the intrinsic properties of NPs, including surface chemical modifications and capping agents, are useful to separate and identify ZnO NP toxicity to zebrafish (Danio rerio).


2021 ◽  
Author(s):  
Balaji GL ◽  
S. Mahesh ◽  
Boya Palajonnala Narasaiah ◽  
Sadegh Rostamnia ◽  
Harihara Padhy ◽  
...  

Abstract The present report an environmental benign route for the fabrication of Zinc Oxide nanoparticles (ZnO-NPs) using sunflower leaf aqueous extract at room temperature. This was an green method is a rapid biogenic and offers few advantages over the chemical and physical procedures, as it is an easy and fast, eco-friendly and does not involve any costly chemicals as well as hazardous chemicals, harmful solvent. The synthesized ZnO-NPs were characterized using different technique such as UV-Visible spectroscopy. The formation of ZnO-NPs was confirmed by Surface Plasmon Resonance (SRP) at 344 nm using UV-Vis spectroscopy. The leaf extract act as a source of phyto-chemicals and are the primarily responsible for the reduction and then formation of stable Zinc Oxide nanoparticles by the characteristic functional groups of extract and synthesized ZnO-NPs were identified by FTIR spectroscopy. Crystalline nature of ZnO-NPs was confirmed by powder –XRD. Size and morphology were measured by HR-TEM analysis. Stability of the nanoparticles is represented by DLS and TGA analysis. The synthesized ZnO-NPs has been found good and efficient catalyst for the synthesis of novel 1,2-dihydroquinazoline derivatives under green method via one pot reaction of 2-amino benzophenone, 1,3-diphenyl-1 H -pyrazole carbaldehydes and ammonium acetate. The synthesized compounds (4a-o) were characterized by 1 HNMR, 13 CNMR and HRMS spectra and further screened for radical scavenging activity. Among all the compounds showed good percentage of inhibition against standard ascorbic acid. The synthesized ZnO nanoparticles showed good antioxidant activity and also act as a good promising material for catalytic agent.


2020 ◽  
Vol 32 (4) ◽  
pp. 907-911
Author(s):  
S. Akash ◽  
N. Ahalya ◽  
P. Dhamodhar

Zinc oxide nanoparticles were synthesized using epicarp of Punica granatum by combustion method at moderate temperatures. Zinc oxide nanoparticles obtained in agglomerate form were characterized by powder X-ray diffractometer (PXRD) and found to have hexagonal phase, wurtzite structure. The crystalline size of nanoparticle was found to be ~ 60 nm by using Debye-Scherrer formula. The morphology Index, Lorentz factor and Lorentz polarization factor were also calculated. Ultraviolet-visible spectroscopy (UV-vis) spectrum for ZnO nanoparticle showed a strong absorbance at 374 nm. This corresponds to the calculated band gap energy of 3.48 eV and the particle size calculated using band gap was found to be 50 nm. The Fourier Transform Infrared Spectroscopy (FTIR) spectrum showed a peak at 499 cm-1, which indicated Zn-O stretch bond. The scanning electron microscopy (SEM) analysis proved the size of nanoparticles synthesized were around 50 nm and energy dispersive X-ray spectroscopy (EDS) revealed the elemental composition of zinc oxide nanoparticles. The ZnO-NPs were evaluated for antibacterial activity against gram positive, tonsillitis causing Streptococcus pyogenes. From the present study, it was concluded that zinc oxide nanoparticles synthesized by combustion method could be valuable and economic in the field of nanotechnology.


2008 ◽  
Vol 8 (8) ◽  
pp. 4224-4226 ◽  
Author(s):  
Mohan Raja ◽  
A. M. Shanmugaraj ◽  
Sung Hun Ryu

Zinc oxide (ZnO) nanoparticle has been synthesized via sol–gel chemistry using zinc acetate as a precursor with sodium hydroxide solution through microemulsion technique. X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies reveal that the resultant zinc oxide nanoparticles are wurtzite type with the controlled morphology of nano triangular and half ellipsoid structures. Room temperature photoluminescence measurement of zinc oxide nanoparticles exhibits a strong green band at around 375 nm with excitation energy of 3.30 eV indicating oxygen vacancies on the surface of the nanoparticles.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 884
Author(s):  
Temoor Ahmed ◽  
Zhifeng Wu ◽  
Hubiao Jiang ◽  
Jinyan Luo ◽  
Muhammad Noman ◽  
...  

Burkholderia glumae and B. gladioli are seed-borne rice pathogens that cause bacterial panicle blight (BPB) disease, resulting in huge rice yield losses worldwide. However, the excessive use of chemical pesticides in agriculture has led to an increase in environmental toxicity. Microbe-mediated nanoparticles (NPs) have recently gained significant attention owing to their promising application in plant disease control. In the current study, we biologically synthesize zinc oxide nanoparticles (ZnONPs) from a native Bacillus cereus RNT6 strain, which was taxonomically identified using 16S rRNA gene analysis. The biosynthesis of ZnONPs in the reaction mixture was confirmed by using UV–Vis spectroscopy. Moreover, XRD, FTIR, SEM-EDS, and TEM analysis revealed the functional groups, crystalline nature, and spherical shape of ZnONPs with sizes ranging from 21 to 35 nm, respectively. Biogenic ZnONPs showed significant antibacterial activity at 50 µg mL−1 against B. glumae and B. gladioli with a 2.83 cm and 2.18 cm zone of inhibition, respectively, while cell numbers (measured by OD600) of the two pathogens in broth culture were reduced by 71.2% and 68.1%, respectively. The ultrastructure studies revealed the morphological damage in ZnONPs-treated B. glumae and B. gladioli cells as compared to the corresponding control. The results of this study revealed that ZnONPs could be considered as promising nanopesticides to control BPB disease in rice.


Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4795 ◽  
Author(s):  
Yasmine Abdallah ◽  
Mengju Liu ◽  
Solabomi Olaitan Ogunyemi ◽  
Temoor Ahmed ◽  
Hatem Fouad ◽  
...  

Bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most devastating diseases, resulting in significant yield losses in rice. The extensive use of chemical antibacterial agents has led to an increase the environmental toxicity. Nanotechnology products are being developed as a promising alternative to control plant disease with low environmental impact. In the present study, we investigated the antibacterial activity of biosynthesized chitosan nanoparticles (CSNPs) and zinc oxide nanoparticles (ZnONPs) against rice pathogen Xoo. The formation of CSNPs and ZnONPs in the reaction mixture was confirmed by using UV-vis spectroscopy at 300–550 nm. Moreover, CSNPs and ZnONPs with strong antibacterial activity against Xoo were further characterized by scanning and transmission electron microscopy, Fourier-transform infrared spectroscopy, and X-ray diffraction. Compared with the corresponding chitosan and ZnO alone, CSNPs and ZnONPs showed greater inhibition in the growth of Xoo, which may be mainly attributed to the reduction in biofilm formation and swimming, cell membrane damage, reactive oxygen species production, and apoptosis of bacterial cells. Overall, this study revealed that the two biosynthesized nanoparticles, particularly CSNPs, are a promising alternative to control rice bacterial disease.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4198
Author(s):  
Ali Aldalbahi ◽  
Seham Alterary ◽  
Ruba Ali Abdullrahman Almoghim ◽  
Manal A. Awad ◽  
Noura S. Aldosari ◽  
...  

Nanoparticles (NPs) have unique properties compared to their bulk counterparts, and they have potentials for various applications in many fields of life science. Green-synthesized NPs have garnered considerable interest due to their inherent features such as rapidity, eco-friendliness and cost-effectiveness. Zinc oxide nanoparticles (ZnO NPs) were synthesized using an aqueous extract of Kalanchoe blossfeldiana as a reducing agent. The resulting nanoparticles were characterized via X-ray diffraction (XRD), dynamic light scattering (DLS), UV-Vis spectroscopy, photoluminescence (PL), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). The antimicrobial potential of the synthesized ZnO NPs against bacterial and fungal strains was examined by the disk diffusion method, and they showed a promising antibacterial and antifungal potential. The catalytic activity of the synthesized ZnO NPs in reducing methylene blue (MB) and eosin was studied via UV-Vis spectroscopy. The decolorization percentages of the MB and Eosin Y dyes were 84% and 94%, respectively, which indicate an efficient degradation of the ZnO NPs. In addition, the cytotoxic activity of the ZnO NPs on the HeLa cell line was evaluated via in vitro assay. The MTT assay results demonstrate a potent cytotoxic effect of the ZnO NPs against the HeLa cancer cell line.


Sign in / Sign up

Export Citation Format

Share Document