scholarly journals Predicting Phosphorus Desorption from Acid Piedmont Rice Soils of Bangladesh

2010 ◽  
pp. 50-60
Author(s):  
MA Islam ◽  
MA Saleque ◽  
AJMS Karim ◽  
ARM Solaiman ◽  
ABS Sarker

A laboratory experiment was conducted at the Bangladesh Rice Research Institute, Gazipur during 2003 to determine phosphorus (P) desorption characteristics for 10 acid piedmont rice soils of Bangladesh. Soil samples were analyzed for sand, silt and clay, pH, organic carbon, available P, Mehlich-3 (M3) extractable P and dithionite extractable Fe (FeD). Desorption of phosphorus (release pattern) from different soils varied from 1.34 to 19.17 ppm. Phosphorus desorption was affected by the increased shaking time up to one hour. In almost all the studied soils, the highest desorbed P was extracted at one hour shaking time, beyond which there was again re-adsorption in most of the soils. Soil properties, particularly, pHKCl, ?pH, organic carbon and clay content were found to be important soil variables in determining phosphorus desorption in piedmont soils. The increase in ?pH and organic carbon increased P desorption, while an increase in clay and Fe tended to decrease in P desorption. Equations were proposed for predicting ?, ?, and K of famous Sharpley’s equation and were tested for better prediction of P desorption in Piedmont soils of Bangladesh. Sharpley’s equations for Piedmont soils resulted in a strong relationship (R2 = 0.86) between measured and predicted P desorption. The equations recommended by Sharpley to predict values for ?, ? and K has provided a good prediction of P desorption for our Piedmont rice soils.

2011 ◽  
Vol 35 (1) ◽  
pp. 25-40 ◽  
Author(s):  
Flávio Adriano Marques ◽  
Márcia Regina Calegari ◽  
Pablo Vidal-Torrado ◽  
Peter Buurman

The occurrence of Umbric Ferralsols with thick umbric epipedons (> 100 cm thickness) in humid Tropical and Subtropical areas is a paradox since the processes of organic matter decomposition in these environments are very efficient. Nevertheless, this soil type has been reported in areas in the Southeast and South of Brazil, and at some places in the Northeast. Aspects of the genesis and paleoenvironmental significance of these Ferralsols still need a better understanding. The processes that made the umbric horizons so thick and dark and contributed to the preservation of organic carbon (OC) at considerable depths in these soils are of special interest. In this study, eight Ferralsols with a thick umbric horizon (UF) under different vegetation types were sampled (tropical rain forest, tropical seasonal forest and savanna woodland) and their macromorphological, physical, chemical and mineralogical properties studied to detect soil characteristics that could explain the preservation of high carbon amounts at considerable depths. The studied UF are clayey to very clayey, strongly acidic, dystrophic, and Al-saturated and charcoal fragments are often scattered in the soil matrix. Kaolinites are the main clay minerals in the A and B horizons, followed by abundant gibbsite and hydroxyl-interlayered vermiculite. The latter was only found in UFs derived from basalt rock in the South of the country. Total carbon (TC) ranged from 5 to 101 g kg-1 in the umbric epipedon. Dichromate-oxidizable organic carbon represented nearly 75 % of TC in the thick A horizons, while non-oxidizable C, which includes recalcitrant C (e.g., charcoal), contributed to the remaining 25 % of TC. Carbon contents were not related to most of the inorganic soil variables studied, except for oxalate-extractable Al, which individually explained 69 % (P < 0.001) of the variability of TC in the umbric epipedon. Clay content was not suited as predictor of TC or of the other studied C forms. Bulk density, exchangeable Al3+, Al saturation, ECEC and other parameters obtained by selective extraction were not suitable as predictors of TC and other C forms. Interactions between organic matter and poorly crystalline minerals, as indicated by oxalate-extractable Al, appear to be one of the possible organic matter protection mechanisms of these soils.


2015 ◽  
Vol 1 (1) ◽  
pp. 13-18
Author(s):  
Quazi Forhad Quadir ◽  
Atiqur Rahman

The study was carried out to investigate the ecotoxicity of Isoproturon on Lemna minor and the interaction of the EC50 value of the chemical with sorption behaviour of the chemical in soil. The sorption isotherms (Kf and KOC) for Isoproturon were determined for three different soils having various organic carbon and clay content. EC50 for Lemna was determined both with and without soil. Both the Freundlich adsorption coefficient (Kf) and normalized sorption coefficient (KOC) values varied with different types of soil. There was moderate correlation between the log Kf and log KOC existed. The regression study revealed a strong relationship between log KOC and organic carbon and between log KOC and soil clay content. There EC50 value for Lemna grown with soil was higher than that grown without soil. However, the difference was statistically insignificant. Greater degree of inconsistency in various data suggests the reiteration of the study.DOI: http://dx.doi.org/10.3329/ralf.v1i1.22347 Res. Agric., Livest. Fish.1(1): 13-18, Dec 2014


2004 ◽  
Vol 33 (1) ◽  
pp. 99 ◽  
Author(s):  
Katarina Börling ◽  
Erasmus Otabbong ◽  
Elisabetta Barberis

2019 ◽  
Vol 37 (3) ◽  
pp. 263-273
Author(s):  
Efraín Francisco Visconti-Moreno ◽  
Ibonne Geaneth Valenzuela-Balcázar

The stability of soil aggregates depends on the organic matter, and the soil use and management can affect the soil organicmatter (SOM) content. Therefore, it is necessary to know therelationship between aggregate stability and the content of SOMin different types of soil use at two different altitudes of theColombian Andes. This study examined the conditions of soilaggregate stability expressed as a distribution of the size classes of stable aggregates (SA) and of the mean weighted diameter of the stable aggregates (MWD). To correlate these characteristics with the soil organic carbon (OC), we measured the particulate organic matter pool (POC), the OC associated with the mineral organic matter pool (HOC), the total organic carbon content (TOC), and the humification rate (HR). Soils were sampled at two altitudes: 1) Humic Dystrudepts in a cold tropical climate (CC) with three plots: tropical mountain rainforest, pastures, and crops; 2) Fluvaquentic Dystrudepts in a warm tropical climate (WC) with three plots: tropical rainforest, an association of oil palm and pastures, and irrigated rice. Soils were sampled at three depths: 0-5, 5-10 and 10-20 cm. The physical properties, mineral particle size distribution, and bulk density were measured. The content of SA with size>2.36 mm was higher in the CC soil (51.48%) than in the WC soil (9.23%). The SA with size 1.18-2.36 mm was also higher in the CC soil (7.78%) than in the WC soil (0.62%). The SA with size 0.60-1.18 mm resulted indifferent. The SA with size between 0.30 and 0.60 mm were higher in the WC soil (13.95%) than in the CC soil (4.67%). The SA<0.30 mm was higher in the WC soil (72.56%) than in the CC soil (32.15%). It was observed that MWD and the SA>2.36 mm increased linearly with a higher POC, but decreased linearly with a higher HR. For the SA<0.30 mm, a linear decrease was observed at a higher POC, while it increased at a higher HR.


1984 ◽  
Vol 64 (1) ◽  
pp. 99-106 ◽  
Author(s):  
T. AL-KANANI ◽  
A. F. MacKENZIE ◽  
G. J. ROSS

The K release characteristics of surface samples from five Quebec soils were investigated. Each soil was fractionated by size into six separates. Each separate was extracted with 1 M ammonium acetate (NH4OAc), with 1 M nitric acid (HNO3) and with sodium tetraphenylboron (NaTPB) and the K extracted was determined. The clay separates contained most of the HNO3 and NaTPB-extractable K. The average amounts of K removed by 1 M HNO3 and NaTPB from the clay was up to 16 times more than that released from silt or sand fractions. The strong relationship between extractable K and clay content was probably due to the similarity in mineralogical composition and degree of weathering of these soils. Clay-sized chlorite and vermiculite were destroyed by the HNO3 extraction but not by the NaTPB extraction. Crop response to K fertilizer was generally reduced as clay content and extractable K increased. Key words: Extractable K, NaTPB-K, HNO3-K


2017 ◽  
Vol 38 (1) ◽  
pp. 143
Author(s):  
Liane Barreto Alves Pinheiro ◽  
Rodrigo Camara ◽  
Marcos Gervasio Pereira ◽  
Eduardo Lima ◽  
Maria Elizabeth Fernandes Correia ◽  
...  

Mound-building termites are important agents of soil bioperturbation, but these species have not been extensively studied thus far. The present study aimed to evaluate the soil particle-size and the chemical attributes of termite mounds and the surrounding soil under different land use strategies. A one-hectare plot was defined for an unmanaged degraded pasture, planted pasture, and for a eucalyptus Corymbia citriodora plantation. In each plot, the top, center, and base sections of five Cornitermes cumulans mounds, and the surrounding soil at the depths of 0-5; 5-10; 10-20 cm, were sampled in the Pinheiral, Rio de Janeiro state. In the three areas, the center of the mounds contained higher clay content, organic carbon, phosphorous, calcium and magnesium, total bases, and cation exchangeable capacity, when compared to the top, base, and the surrounding soils. However, the center had lower values of exchangeable acidity and potassium, of the three areas. In the eucalyptus plantation, the values of pH, total bases, calcium, and magnesium were lower, whereas aluminum, exchangeable acidity, sodium, and cation exchange capacity were higher both in the mounds and in the surrounding soil, in relation to the pastures. There were no differences among the three areas in terms of organic carbon, potassium, phosphorous, and total bases, in the mounds and adjacent soil. Thus, the termite activity altered the clay content and most of the soil chemical properties in all of the studied areas, but only for the center of the mounds. However, the effect of these organisms was different in the eucalyptus plantation in relation to the pasture areas.


2017 ◽  
Vol 22 (4) ◽  
pp. 193
Author(s):  
I Gusti Bagus Siladharma ◽  
Widiastuti Karim

The widespread of coral disease may threatened Bali`s marine tourism which is the main asset for the nation prosperity. However, the disease prevalence is still unknown, in particular inshore coral reefs near to tourist spot areas. Therefore, the research aims to investigate the contribution of terrestrial runoff to coral disease prevalence and to examine the relationships between disease prevalence and environmental parameters (nitrate, phosphate, organic carbon and total suspended solids (TSS)) within the population of massive Porites on shallow north Bali reefs. Syndrome, diseases and healthy colonies of massive Porites coral were counted and noted within a 2 x 10 m belt transect at 3 sampling sites. The dominant disease observed was ulcerative white spots (UWS), while the syndromes were pigmentation response and aggressive overgrowth by macroalgae. The highest mean UWS prevalence was at site 3 which was the closest site to runoff (prevalence = 91%).This disease only affected one colony at site 1 and 2, respectively. Disease prevalence had strong relationship with TSS and nitrate, yet it showed weak relationship with phosphate and organic carbon. These results suggest that terrestrial runoff could contribute to the disease prevalence by increasing the TSS, nutrients and organic carbon loading to the inshore ecosystems. High level of organic carbon could severe the disease, particularly when combined with elevated TSS and nutrient, by reducing the coral`s immunity system. Keywords: coral disease, prevalence, terrestrial runoff, Porites, ulcerative white spot, environmental parameter, North Bali.


2005 ◽  
Vol 29 (5) ◽  
pp. 685-694 ◽  
Author(s):  
Shinjiro Sato ◽  
Nicholas Brian Comerford

Liming is a common practice to raise soil pH and increase phosphorus (P) bioavailability in tropical regions. However, reports on the effect of liming on P sorption and bioavailability are controversial. The process of phosphorus desorption is more important than P sorption for defining P bioavailability. However few studies on the relationship between soil pH and P desorption are available, and even fewer in the tropical soils. The effects of soil pH on P sorption and desorption in an Ultisol from Bahia, Brazil, were investigated in this study. Phosphorus sorption decreased by up to 21 and 34 % with pH increases from 4.7 to 5.9 and 7.0, respectively. Decreasing Langmuir K parameter and decreasing partition coefficients (Kd) with increasing pH supported this trend. Phosphorus desorption was positively affected by increased soil pH by both the total amount of P desorbed and the ratio of desorbed P to initially sorbed P. A decreased K parameter and increased Kd value, particularly at the highest pH value and highest P-addition level, endorsed this phenomenon. Liming the soil had the double effect of reducing P sorption (up to 4.5 kg ha-1 of remaining P in solution) and enhancing P desorption (up to 2.7 kg ha-1 of additionally released P into solution).


2021 ◽  
Author(s):  
Steffen A. Schweizer ◽  
Carsten W. Mueller ◽  
Carmen Höschen ◽  
Pavel Ivanov ◽  
Ingrid Kögel-Knabner

AbstractCorrelations between organic carbon (OC) and fine mineral particles corroborate the important role of the abundance of soil minerals with reactive surfaces to bind and increase the persistence of organic matter (OM). The storage of OM broadly consists of particulate and mineral-associated forms. Correlative studies on the impact of fine mineral soil particles on OM storage mostly combined data from differing sites potentially confounded by other environmental factors. Here, we analyzed OM storage in a soil clay content gradient of 5–37% with similar farm management and mineral composition. Throughout the clay gradient, soils contained 14 mg OC g−1 on average in the bulk soil without showing any systematic increase. Density fractionation revealed that a greater proportion of OC was stored as occluded particulate OM in the high clay soils (18–37% clay). In low clay soils (5–18% clay), the fine mineral-associated fractions had up to two times higher OC contents than high clay soils. Specific surface area measurements revealed that more mineral-associated OM was related to higher OC loading. This suggests that there is a potentially thicker accrual of more OM at the same mineral surface area within fine fractions of the low clay soils. With increasing clay content, OM storage forms contained more particulate OC and mineral-associated OC with a lower surface loading. This implies that fine mineral-associated OC storage in the studied agricultural soils was driven by thicker accrual of OM and decoupled from clay content limitations.


Sign in / Sign up

Export Citation Format

Share Document