Effect of Polyethylene Glycol (PEG) on Molten Plasticized Cellulose Acetate (CA)

2013 ◽  
Vol 830 ◽  
pp. 172-175
Author(s):  
Cheng Zhi Chuai ◽  
Zhi Zhang

Ethylene glycol (EG) and polyethylene glycol (PEG) were added as plasticizers to improve the processing performance of cellulose acetate (CA). The CA with 30% plasticizers were melted by HAAKE at 200 °C. The effects of EG and PEG (degree of polymerization in 200-800) on rheological properties and mechanical properties of CA were investigated. The results show that the plasticizing time, equilibrium torque and melt viscosity of the plasticizing system increase with the increase of PEG molecular weight, while the processing performance decreased. The tensile strength of the system decrease as the PEG molecular weight increased. The plasticizing system which contents 30% PEG-200(degree of polymerization is 200) shows the maximum elongation at break. The minimum values appeared in both flexural strength and flexural modulus in the CA/PEG-200 system.

2021 ◽  
Vol 11 (12) ◽  
pp. 5317
Author(s):  
Rafał Malinowski ◽  
Aneta Raszkowska-Kaczor ◽  
Krzysztof Moraczewski ◽  
Wojciech Głuszewski ◽  
Volodymyr Krasinskyi ◽  
...  

The need for the development of new biodegradable materials and modification of the properties the current ones possess has essentially increased in recent years. The aim of this study was the comparison of changes occurring in poly(ε-caprolactone) (PCL) due to its modification by high-energy electron beam derived from a linear electron accelerator, as well as the addition of natural fibers in the form of cut hemp fibers. Changes to the fibers structure in the obtained composites and the geometrical surface structure of sample fractures with the use of scanning electron microscopy were investigated. Moreover, the mechanical properties were examined, including tensile strength, elongation at break, flexural modulus and impact strength of the modified PCL. It was found that PCL, modified with hemp fibers and/or electron radiation, exhibited enhanced flexural modulus but the elongation at break and impact strength decreased. Depending on the electron radiation dose and the hemp fibers content, tensile strength decreased or increased. It was also found that hemp fibers caused greater changes to the mechanical properties of PCL than electron radiation. The prepared composites exhibited uniform distribution of the dispersed phase in the polymer matrix and adequate adhesion at the interface between the two components.


2004 ◽  
Vol 77 (2) ◽  
pp. 380-390
Author(s):  
Wonmun Choi ◽  
Tomoyuki Matsumura

Abstract The reactions of dichloroalkanes and sodium tetra-sulfide (Na2S4) were carried out in a mixture of water and toluene to produce corresponding cyclic polysulfides and polysulfide polymer. The low molecular weights of cyclic sulfides were obtained by the reaction at 90 °C, while the high molecular weight of polysulfide polymer was obtained by the reaction at 50 °C. GPC chromatograms and Mass spectra revealed that the structures of cyclic polysulfide were 1:1, 2:2, and 3:3 adducts of dichloroalkane and sodium tetra-sulfide. The mechanical properties of vulcanized NR at 148 °C with cyclic sulfides were similar to that with sulfur. However, both tensile strength and elongation at break of vulcanized NR at 170 °C with cyclic sulfides are much higher than that with sulfur. The aging properties of vulcanized NR at 148 °C or 170 °C with cyclic polysulfides indicate better stability.


2021 ◽  
Vol 32 (2) ◽  
pp. 87-104
Author(s):  
Pui-Voon Yap ◽  
Ming-Yeng Chan ◽  
Seong-Chun Koay

This research work highlights the mechanical properties of multi-material by fused deposition modelling (FDM). The specimens for tensile and flexural test have been printed using polycarbonate (PC) material at different combinations of printing parameters. The effects of varied printing speed, infill density and nozzle diameter on the mechanical properties of specimens have been investigated. Multi-material specimens were fabricated with acrylonitrile butadiene styrene (ABS) as the base material and PC as the reinforced material at the optimum printing parameter combination. The specimens were then subjected to mechanical testing to observe their tensile strength, Young’s modulus, percentage elongation, flexural strength and flexural modulus. The outcome of replacing half of ABS with PC to create a multi-material part has been examined. As demonstrated by the results, the optimum combination of printing parameters is 60 mm/s printing speed, 15% infill density and 0.8 mm nozzle diameter. The combination of ABS and PC materials as reinforcing material has improved the tensile strength (by 38.46%), Young’s modulus (by 23.40%), flexural strength (by 23.90%) and flexural modulus (by 37.33%) while reducing the ductility by 14.31% as compared to pure ABS. The results have been supported by data and graphs of the analysed specimens.


2011 ◽  
Vol 217-218 ◽  
pp. 347-352 ◽  
Author(s):  
Chun Xia He ◽  
Jun Jun Liu ◽  
Pan Fang Xue ◽  
Hong Yan Gu

The influence of the rice husks powder (RHP) content and its particle size distribution on the composite’s tensile strength, fracturing elongation ratio, flexural strength and flexural elastic modulus has been investigated. Respective water absorption and thermal properties of PP composites incorporated with different proportion of RHP have also been analyzed. The microstructure of fractured surfaces was further observed in scanning electron microscopy (SEM). The results showed that the composites with RHP of 245 μm have higher mechanical properties. The tensile strength and fracturing elongation ratio decrease with the increase of RHP content, and reach peak values in 30% RHP content. Water absorption and volume expansion ratio of the composite increase with the increasing of RHP content. Flexural strength and flexural modulus decrease after water absorption. When PHR content is low, the RHP particles are well distributed and the interface of RHP and PP is smooth. When PHR content is higher, the RHP particles tend to agglomerate, leading to poorer interface and lower mechanical properties, the composite failed with brittle fracture.


2019 ◽  
Vol 27 (1(133)) ◽  
pp. 37-44
Author(s):  
Marcin Barburski ◽  
Mariusz Urbaniak ◽  
Sanjeeb Kumar Samal

In this article, the mechanical properties of biaxial and triaxial woven aramid fabric and respective reinforced composites were investigated. Both fabrics had the same mass/m2. The first part of the experimental investigation was focused on the mechanical properties of different non-laminated aramid fabrics (biaxial and triaxial). The second part was concerned with the mechanical properties of composites made of a different combination of layers of fabric reinforced with an epoxy resin matrix in the order of biaxial+biaxial, trixial+triaxial and biaxial+triaxial. The composites were tested for tensile strength, flexural strength, strain and Young’s and flexural modulus. It can be seen from the results that the density and direction of the yarns are the most important parameters for determination of the strength of the fabric reinforced composite. The biaxial composite clearly showed better tensile strength, while the bi-tri axial order showed good flexural strength compared to the other composite combinations. These fabric reinforced composites have suitable applications in the areas of medical, protection and in the automotive industries.


2011 ◽  
Vol 183-185 ◽  
pp. 1611-1615 ◽  
Author(s):  
Jian Hua Wang ◽  
Shuen Liang ◽  
Yan Yan Wang ◽  
Chun Rong Tian ◽  
Xiu Li Zhao

Polyurethane (PU) with mixed poly(ethylene glycol) / poly(ε-caprolactone) (PEG/PCL) soft segments is a representatively kind of degradable polyurethane material. Polyurethane foams (PUF) with mixed PEG/PCL soft segments were synthesized by using one pot method, and their mechanical and dynamic mechanical properties were investigated. Influences of PEG/PCL weight ratio and molecular weight of soft segments on PUF's mechanical and dynamic mechanical properties were studied. The results showed that: with increasing content of PCL, PUF's tensile strength, elongation at break, stress at certain tensile/compressive strain and storage modulus increased gradually; with increasing molecular weight of soft segment, PUF's elongation at break increased, but tensile strength, stress at certain tensile/compressive strain and storage modulus all decreased accordingly; glass transition temperature (Tg) of PUF with various soft segments decreased according to the following sequence: PEG-400, PCL-210N, PEG-1000 and PTMG1000; loss factor of PUF with PEG/PCL mixed soft segments was higher than that of PUF with individual PEG or PCL soft segments.


2011 ◽  
Vol 378-379 ◽  
pp. 735-739
Author(s):  
Yue Wen Li ◽  
Xin Hua Chen

Reactive compatibilization between high-density polyethylene(HDPE) and wood-flour was achieved via direct reactive extrusion of glycidyl methacrylate(GMA), initiator, HDPE and wood-flour. Impact rupture surface of the composite was observed by scanning electron microscope(SEM), and its load deformation temperature(HDT) and mechanical properties were tested. Effect of GMA dosage and extrusion temperature on reactive compatibilization of the composite was analysed. The result indicated that the anchoring strength of interface in the composite was obviously strengthened, and its HDT, tensile strength, flexural strength, notched impact strength and elongation at break of the composite were distinctly improved due to the addition of GMA and dicumyl peroxide(DCP). When the composite was extruded at 180°C, the peak values of its HDT, tensile strength, flexural strength, elongation at break and notched impact strength respectively were 84°C, 40Mpa, 45Mpa, 11% and 6.6KJ.m-2, which respectively increased by 17°C, 74%, 36%, 83% and 69% than that of the composite without reactive compatibilization, and when the composite was extruded at 190°C, the peak values of its HDT, tensile strength, flexural strength, elongation at break and notched impact strength respectively were 84°C, 40Mpa, 44Mpa, 11% and 6.6KJ.m-2, which respectively increased by 20°C, 60%, 26%, 83% and 83% than that of the composite without reactive compatibilization. When GMA usage increased, the HDT and mechanical properties of the composite increased first, then descended, and the optimum usage of GMA was 1wt%-3wt%.


2021 ◽  
Vol 16 ◽  
pp. 1-10
Author(s):  
Norzita Yacob

Sago starch is a seasonal based plantation and widely found in Asia country. Its application mainly in cooking such as biscuits and as a thickener in jellies. To further utilize its application, bioplastic from sago starch was developed. In this study, sago starch films were prepared through a blending and casting method using polyethylene glycol (PEG) as a plasticizer by varying its molecular weights and concentrations. The interaction between starch and PEG in the blend was studied using FTIR technique. The effect on transparency, tensile stress, Young’s modulus as well as elongation percentages of the films was also examined. The results suggested that the addition of low molecular weight PEG (400 g.mol-1) increased the tensile stress of sago films from 33.51 MPa up to 39.11 MPa. Nevertheless, incorporation of high molecular weight of PEG (4000 g.mol-1) decreased the tensile strength of the film. Tensile strength and elongation at break of sago films increased with increasing of PEG concentration up to 2% and decreased with further increased of PEG content. Results indicated that there was a miscibility between these two components.


BioResources ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 1914-1939
Author(s):  
R. Nurul Fazita ◽  
Nurnadia Johary ◽  
H. P. S. Abdul Khalil ◽  
Najieha Norazli ◽  
A. Azniwati ◽  
...  

Reinforcement with natural fibres is a common method to improve impact properties of poly(lactic acid) (PLA). In this study, composites made from PLA and bamboo particles were melt-compounded in a twin-screw extruder and formed by compression moulding. Tensile, flexural, and impact tests were conducted. Particle size (A), particle loading (B), screw speed (C), and die temperature (D) were varied at three levels. Tensile strength and modulus, flexural strength and modulus, and impact strength were the response variables. The experiment design was based on Taguchi’s (L9) orthogonal array. Through variance analysis, the particle loading was found to be the dominant factor influencing the mechanical properties, followed by die temperature. The optimum parameters were validated with a confirmation test. The results showed a noticeable improvement of impact properties compared to neat PLA by 55%, without compromising tensile and flexural properties. Flexural strength, flexural modulus, and tensile modulus of the composites were greater than that of pure PLA. However, only tensile strength was reduced by about 28% compared to pure PLA. Importantly, the DOE method with maximizing the desirability properties was found to be an effective systematic approach to identify an optimal parameter setting of the extrusion moulding process.


1970 ◽  
Vol 45 (2) ◽  
pp. 117-122 ◽  
Author(s):  
Husna P Nur ◽  
M Akram Hossain ◽  
Shahin Sultana ◽  
M Mamun Mollah

Use of natural fiber as reinforcing material is the latest invention of polymer science in order to get higher strength with lower weight composite materials having several applications. In this present investigation banana fiber, a natural fiber, is used as the reinforcing material. Low density polyethylene (LDPE)-banana fiber reinforced composites were prepared using both untreated and bleached (treated) banana fiber and LDPE with 7.5, 15, 22.5 and 30% weight content of fibers by using compression molding technique. Physico-mechanical properties (e.g. tensile strength, flexural strength, elongation at break, Young's modulus) of different types of prepared composites were characterized. From this study it is observed that all these values have augmented up to a definite percentage. The tensile strengths and flexural strengths of the composites increased up to 22.5% fiber addition then started to decrease gradually. Young moduli of the composites increased with the increase of fiber addition. Water absorption also increased with the weight of the fiber. Whereas elongation at break decreased with increasing fiber loading. Mechanical properties of bleached banana fiber-LDPE composites were slightly higher than the untreated banana fiber-LDPE composites. Compared to virgin molded LDPE both tensile and flexural strengths and Young moduli of these LDPE-banana fiber composites were significantly higher. All the variable properties like tensile strength, flexural strength, and water absorption capacity showed a very significant role in these polymer composites. Keywords: Banana fiber; LDPE; Composite; Tensile strength; Flexural strength DOI: 10.3329/bjsir.v45i2.5708Bangladesh J. Sci. Ind. Res. 45(2), 117-122, 2010


Sign in / Sign up

Export Citation Format

Share Document