scholarly journals Use of biopolybag from tapioca starch and sawdust waste

2021 ◽  
Vol 912 (1) ◽  
pp. 012091
Author(s):  
I Risnasari ◽  
A Nuryawan ◽  
Delvian ◽  
Y S K Sekali

Abstract One alternative to overcome the weakness of polybags, namely creating plastic waste, is the use of biodegradable polybags (biopolybags) that are easily degraded so that they can be planted directly without having to be opened and disposed of. Therefore, the purpose of this study was to determine the effect of comparison between tapioca starch and sawdust pulp on mechanical properties, plant height and diameter growth, and soil chemical properties. The analysis used in this research is a tensile test using ASTM D638 2005 standard, elongation (elongation at break), elasticity (young’s modulus), and water absorption using SNI. The comparison of tapioca starch and sawdust pulp had a significant effect on the mechanical properties of the tensile strength and elongation tests, and had no significant effect on the elasticity.

2019 ◽  
Vol 821 ◽  
pp. 167-173 ◽  
Author(s):  
Muammel M. Hanon ◽  
Róbert Marczis ◽  
László Zsidai

In this paper, the mechanical properties of Polyethylene terephthalate-glycol (PETG) tensile test specimens have been investigated. The test pieces were prepared using fused deposition modelling (FDM) 3D printing technology. Three print settings were examined which are: raster direction angles, print orientations, and infill percentage and patterns in order to evaluate the anisotropy of objects when employing FDM print method. The variations in stress-strain curves, tensile strength values and elongation at break among the tested samples were studied and compared. Illustration for the broken specimens after the tensile test was accomplished to know how the test pieces printed with various parameters were fractured. A comparison with some previous results regarding the elongation at break has been carried out.


ROTOR ◽  
2017 ◽  
Vol 10 (2) ◽  
pp. 23
Author(s):  
Mochamad Asrofi ◽  
Hairul Abral ◽  
Anwar Kasim ◽  
Adjar Pratoto ◽  
Herwin Gevin ◽  
...  

This study reported about mechanical properties and fracture surface of ramie fiber reinforced tapioca starch based biocomposites. The amount of fibers in matrix was kept constant at 10% from dry weight starch basis. Fabrication of biocomposites was solution casting. The effect of vibration duration from ultrasonic bath was 0, 15, 30, and 45 min. This treatment was applied to biocomposites while gelatinized. Tensile test was carried out to determine the mechanical properties of biocomposites. Fracture surface of biocomposites after tensile test was observed by using scanning electron microscopy (SEM). The result shows that, tensile strength increased when vibration time was added. The maximum tensile strength was obtained at 45 min vibration time with 2,84 MPa. This phenomenon was supported by SEM observation which indicate compact structure. Keywords: Tapioca starch, ramie fiber, biocomposites, mechanical properties, SEM


1970 ◽  
Vol 45 (2) ◽  
pp. 117-122 ◽  
Author(s):  
Husna P Nur ◽  
M Akram Hossain ◽  
Shahin Sultana ◽  
M Mamun Mollah

Use of natural fiber as reinforcing material is the latest invention of polymer science in order to get higher strength with lower weight composite materials having several applications. In this present investigation banana fiber, a natural fiber, is used as the reinforcing material. Low density polyethylene (LDPE)-banana fiber reinforced composites were prepared using both untreated and bleached (treated) banana fiber and LDPE with 7.5, 15, 22.5 and 30% weight content of fibers by using compression molding technique. Physico-mechanical properties (e.g. tensile strength, flexural strength, elongation at break, Young's modulus) of different types of prepared composites were characterized. From this study it is observed that all these values have augmented up to a definite percentage. The tensile strengths and flexural strengths of the composites increased up to 22.5% fiber addition then started to decrease gradually. Young moduli of the composites increased with the increase of fiber addition. Water absorption also increased with the weight of the fiber. Whereas elongation at break decreased with increasing fiber loading. Mechanical properties of bleached banana fiber-LDPE composites were slightly higher than the untreated banana fiber-LDPE composites. Compared to virgin molded LDPE both tensile and flexural strengths and Young moduli of these LDPE-banana fiber composites were significantly higher. All the variable properties like tensile strength, flexural strength, and water absorption capacity showed a very significant role in these polymer composites. Keywords: Banana fiber; LDPE; Composite; Tensile strength; Flexural strength DOI: 10.3329/bjsir.v45i2.5708Bangladesh J. Sci. Ind. Res. 45(2), 117-122, 2010


2014 ◽  
Vol 679 ◽  
pp. 292-299
Author(s):  
Mohamad Kahar Ab Wahab ◽  
H. Ismail ◽  
N.Z. Noriman ◽  
H. Kamarudin ◽  
A.M. Mustafa Al Bakri

Effects of citric acid on the mechanical properties of thermoplastic tapioca starch/high density polyethylene/natural rubber (HDPE/NR/TPS) blends were investigated. The ratio between HDPE/NR was fixed at 70/30 and used as a matrix system. TPS loadings with and without modification with citric acid (CA) were varied from 0% to 30wt%. Mechanical and physical properties of blends were evaluated as a function of TPS loadings modified with and without CA. The tensile strength, Young’s modulus and elongation at break were found to decrease with increasing TPS content. However an improvement in the tensile strength for TPS modified with CA at 5%, 10% and 20% TPS loadings was observed. The degree of TPS adhesion and dispersion in HDPE/NR blends were determined by scanning electron microscope (SEM).Keywords; HDPE/NR/TPS, citric acid, tensile properties, morphology.


2014 ◽  
Vol 695 ◽  
pp. 709-712 ◽  
Author(s):  
Mohd Amran ◽  
Raja Izamshah ◽  
Mohd Hadzley ◽  
Mohd Shahir ◽  
Mohd Amri ◽  
...  

The effect of maleated polypropylene (MAPP) as binder on the mechanical properties of kenaf fibre/polypropylene (KF/PP) composites is studied. Ratios between kenaf fibre and PP having 10:90, 30:70 and 50:50 in weight ratio were selected. Further, MAPP having 1, 3 and 5 percent in percentage of weight ratio was mixed in KF/PP composites. Hot press machine was used to produce tensile test samples of KF/PP composites. The mechanical properties that are tensile strength, tensile modulus and elongation at break of KF-PP composites were obtained from tensile test result. It is found that the tensile strength and tensile modulus increase with increasing the kenaf fibre loading and higher percentage of MAPP. Further, the elongation at break for KF/PP composites shows lower result when increasing of kenaf fibre loading. However, when percentage of MAPP added in KF/PP composites increases, the elongation at break increased slightly. Thus, result shows that kenaf fibre/PP composites with binder were better in tensile strength, tensile modulus however the elongation at break shows weak result unless the binder was added.


2013 ◽  
Vol 795 ◽  
pp. 313-317 ◽  
Author(s):  
M. Sabri ◽  
A. Mukhtar ◽  
K. Shahril ◽  
A. Siti Rohana ◽  
Husseinsyah Salmah

Compatibilizer is used to improve mechanical properties and water absorption behaviour of polypropylene/coconut fiber (PP/CF) composites by promoting strong adhesion between CF filler and PP Matrix. Maleic Anhydride Grafted Polypropylene (MAPP) treated and untreated composites were prepared in formulation of 10 wt%, 20 wt%, 30 wt%, and 40 wt%. The mechanical tensile test indicates that composite with 10 wt% has the optimum value of tensile strength, and the MAPP treated composite shows the tensile strength was increased. The modulus of elasticity was increased while the elongation at break was decreased by increasing of filler loading. Meanwhile, the swelling test discerned that the increase of filler loading increased the water absorption of composites and the presence of MAPP reduced the equilibrium water absorption percentage.


2020 ◽  
Vol 15 (1) ◽  
pp. 45-52
Author(s):  
Lia Ernita ◽  
Medyan Riza ◽  
Syaubari Syaubari

The performance and characterization of biodegradable plastic from tapioca starch was studied. Modified the chitosan was one of the ingredients for produce  the biodegradable plastics. The produced biodegradable polastic were thin sheet plastic, elastic and transparent. The biodegradable plastic performance had tensile strength between 2,26-3.73 Mpa, elongation ranges from 17.24 to 76.76%, and water absorption ranges from 30.81-268.9%. In antioxidant analyze, apples are wrapped in plastic and had significant mechanical properties changes on 8th day.Morphology scanning result showed that in the chitosan-polyNIPAM there were no cavities may caused high hydrophilicity in the biodegradable plastic.


Polymers ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 827 ◽  
Author(s):  
Chia-Yang Wu ◽  
Wai-Bun Lui ◽  
Jinchyau Peng

Poly(3-hyroxybutyrate-co-3-hydroxyvalerate) (PHBV), poly(vinyl acetate) (PVAc), and tapioca starch are environment-friendly materials. The present study used these materials to produce biodegradable plastic pellets by melt extrusion. The tapioca starch content of composite formulations, the maleic anhydride content, and the screw speed of the extruder were chosen as variables for the extrusion process. A Box-Behnken response surface design was used to establish mathematical models to predict the relationship between the operating variables and the objective attributes (tensile strength, elongation at break, and water absorption) of the blends. Blend morphology was also assessed. The regression coefficients revealed that the extrusion parameters most significantly affecting extrudate responses were tapioca starch content and maleic anhydride content, both showing significant (p < 0.01) linear effects. The results of the analysis of variance found the models are in good agreement with experimental results as informed by high correlation coefficients (R2 > 0.9), with no significant lack of fit. From the numerical analysis, optimized operating variables (20.13% tapioca starch content, 10.14% maleic anhydride content, and a screw speed of 41.3 rpm) produced a product with optimum values of 16.4 MPa tensile strength, 13.2% elongation at break, and 30.94% water absorption.


2017 ◽  
Vol 888 ◽  
pp. 239-243 ◽  
Author(s):  
Ajiya Dahiru Adamu ◽  
Suzi Salwah Jikan ◽  
Balkis Haji A. Talip ◽  
Nur Azam Badarulzaman ◽  
Shehu Yahaya

Biodegradable films from tapioca starch (TPS) were formed by tape casting. The impact of glycerol (0, 5, 10, 15 and 20%) on the mechanical properties was investigated. The increase in glycerol content reduces the tensile strength while increasing the elongation at break. The varying concentrations of glycerol led to changes in tapioca starch edible film properties, potentially affecting film performances. The merging and increase in the intensity of absorption between 3700-3300 cm-1 as a result of increase in glycerol proportion is due to possible interaction of the OH groups in TPS and glycerol thereby increasing intermolecular H-bond.


2021 ◽  
Vol 11 (12) ◽  
pp. 5317
Author(s):  
Rafał Malinowski ◽  
Aneta Raszkowska-Kaczor ◽  
Krzysztof Moraczewski ◽  
Wojciech Głuszewski ◽  
Volodymyr Krasinskyi ◽  
...  

The need for the development of new biodegradable materials and modification of the properties the current ones possess has essentially increased in recent years. The aim of this study was the comparison of changes occurring in poly(ε-caprolactone) (PCL) due to its modification by high-energy electron beam derived from a linear electron accelerator, as well as the addition of natural fibers in the form of cut hemp fibers. Changes to the fibers structure in the obtained composites and the geometrical surface structure of sample fractures with the use of scanning electron microscopy were investigated. Moreover, the mechanical properties were examined, including tensile strength, elongation at break, flexural modulus and impact strength of the modified PCL. It was found that PCL, modified with hemp fibers and/or electron radiation, exhibited enhanced flexural modulus but the elongation at break and impact strength decreased. Depending on the electron radiation dose and the hemp fibers content, tensile strength decreased or increased. It was also found that hemp fibers caused greater changes to the mechanical properties of PCL than electron radiation. The prepared composites exhibited uniform distribution of the dispersed phase in the polymer matrix and adequate adhesion at the interface between the two components.


Sign in / Sign up

Export Citation Format

Share Document