scholarly journals Development and in vitro evaluation of pulsatile drug delivery system of enalapril maleate

2015 ◽  
Vol 18 (1) ◽  
pp. 66-71 ◽  
Author(s):  
Sumaiya Mehjabin Tosha ◽  
Ashima Aziz ◽  
Sharmin Jahan Chisty ◽  
Md Asaduzzaman ◽  
Mohiuddin Ahmed Bhuiyan

Pulsatile drug delivery of enalapril maleate is one such system that, by delivering drug at the right time, right place and in right amounts, holds good promises of benefit to the patients suffering from hypertension. The basic design involves the preparation of cross linked hard gelatin capsules using formaldehyde. Then the drug diluent mixtures were prepared and loaded which was separated by using hydrogel plug of polymers of different grades such as HPMC 50 cps, HPMC 100 cps, HPMC K4M, HPMC K15M, HPMC K100M, xanthan gum, carbopol 971 and sodium CMC at different amount (100 and 120 mg). Prepared formulations were subjected to evaluation of various physical parameters and in vitro drug release studies. Dissolution tests were performed using the USP type I basket method at 50 rpm in 6.8 phosphate buffer. From the in vitro dissolution studies it was found that by increasing the amount of polymers, release rate was decreased. Here, 100 mg of HPMC K100M showed 80% drug release in 8 hours whereas 120 mg showed 78.87% drug release in 10 hours. Similar decrease in the release rates were found with the increase of other polymers used in this study. The release data was fitted to various mathematical models such as zero order, first order, Higuchi, Korsmeyer Peppas and Hixson Crowell cube root law. The drug release follows mixed order kinetics and mechanism was found to be non-Fickian diffusion.Bangladesh Pharmaceutical Journal 18(1): 66-71, 2015

Author(s):  
Kumari P.V. Kamala ◽  
Mounica V. ◽  
Rao Y. Srinivasa

Pulsatile drug delivery system is one type of drug delivery system, where the delivery device is capable of releasing drugs after a predetermined time-delay (i.e. lag time). This system has a peculiar mechanism of delivering the drug rapidly and completely after a "lag time," i.e., a period of "no drug release." These systems are beneficial for drugs having high first-pass effect drugs administered for diseases that follow chrono pharmacological behavior such as drugs having specific absorption sites in GIT, targeting to colon; and cases where nighttime dosing is required. The objective of the present study was to formulate and evaluate a press coated pulsatile drug delivery system of simvastatin in order to attain a time controlled release to lower the blood cholesterol level by releasing the drug with a distinct predetermined lag time of five hrs. Simvastatin is a water insoluble drug and its absorption is dissolution rate limited. The core formulations were composed of simvastatin and disintegrants like lycoat, SSG, ludiflash in different ratios and was coated with xanthan gum, guar gum, HPMC K4M, HPMC K15M as a release modifier. Press coated tablets were evaluated for hardness, friability, drug content, and in vitro drug release. Result of in vitro dissolution study of the prepared tablet suggested that, the release of drug from press coated tablets match with chrono-biological requirement of disease.


Author(s):  
Dhulipalla Mounika ◽  
I. Deepika Reddy ◽  
K. Sai Chandralekha ◽  
Kapu Harika ◽  
Ramarao Nadendla ◽  
...  

Oral drug delivery is the most widely utilized route of administration among all the routes that have been explored for systemic delivery of drugs via pharmaceutical products of different dosage form. Oral route is considered most natural, uncomplicated, convenient and safe due to its ease of administration, patient acceptance and cost-effective manufacturing process. Gastroretentive drug delivery system was developed in pharmacy field and drug retention for a prolonged time has been achieved. The goal of this study was to formulate and in-vitro evaluate Ciprofloxacin HCl controlled release matrix floating tablets. Ciprofloxacin HCl floating matrix tablets were prepared by wet granulation method using two polymers such as HPMC K100M (hydrophilic polymer) and HPMC K15M. All the Evaluation parameters were within the acceptable limits. FTIR spectral analysis showed that there was no interaction between the drug and polymers. In-vitro dissolution study was carried out using USP dissolution test apparatus (paddle type) at 50 rpm. The test was carried out at 37 ± 0.5 0C in 900ml of the 0.1 N HCl buffer as the medium for eight hours. HPMC K100M shows a prolonged release when compared to HPMC K15M. These findings indicated that HPMC K100M can be used to develop novel gastroretentive controlled release drug delivery systems with the double advantage of controlled drug release at GIT pH. On comparing the major criteria in evaluation such as preformulation and in vitro drug release characteristics, the formulation F8 was selected as the best formulation, as it showed the drug content as 99±0.4% and swelling index ratio was 107.14, and in-vitro drug released 61.31±0.65% up to 8 hours. Results indicated that controlled Ciprofloxacin HCl release was directly proportional to the concentration of HPMC K100M and the release of drug followed non-Fickian diffusion. Based on all the above evaluation parameters it was concluded that the formulation batch F8 was found to be best formulation among the formulations F1 to F8 were prepared.


2021 ◽  
Vol 12 (7) ◽  
pp. 25-31
Author(s):  
Pooja . ◽  
Pankaj Kumar Sharma ◽  
Viswanath Agrahari

Background: The aim of this study is to develop a liquid self-nano emulsifying drug delivery system for alverine (liquid-SNEDDS).Excipients in the alverine SNEDDS include Ethyl oleate as the oil phase, Tween 80 as a surfactant, and PEG600, Propylene glycol as a cosurfactant.The prepared eleven formulations of alverine SNEDDS were performed for emulsification time, percentage transmittance, particle size, drug release, in vitro dissolution and stability studies.The optimised alverine liquid SNEDDS formulation (D1) was studied for drug-excipient compatibility using infrared spectroscopy, as well as particle size, zeta potential, transmission electron microscopy, and stability. Alverine SNEDDS have a spherical shape with uniform particle distribution, according to their morphology. D1's optimised formulation's drug release percentage (96.6). The stability data revealed no discernible changes in drug content, emulsifying properties, drug release, or appearance. As a result, a potential SNEDDS formulation of alverine with improved solubility, dissolution rate, and bioavailability was developed.


2019 ◽  
Vol 9 (4-s) ◽  
pp. 298-309
Author(s):  
Sudhakar Pathak ◽  
Harish Pandey ◽  
Sunil Kumar Shah

Floating Drug Delivery Systems (FDDS) have a bulk density lower than gastric fluids and thus remain buoyant in the stomach for a prolonged period of time, without affecting the gastric emptying rate. While the system is floating on the gastric contents, the drug is released slowly at a desired rate from the system. These floating tablets mainly prepared for reduction of lag time and release the drug up to 12 hours and may also increase the bioavailability of the drugs by utilizing the drug to full extent avoiding unnecessary frequency of dosing. The purpose of this research was to develop and evaluated floating matrix tablets of sacubitril and valsartan. The floating matrix tablets of sacubitril and valsartan were prepared by direct compression method using altered concentrations of HPMC K4M, HPMC K100M, sodium alginate as polymers and sodium bicarbonate, citric acid as gas generating agent. FTIR, DSC studies conformed that there was no incompatibility between the polymers and the drug. Tablet preformulation parameters were within the pharmacopoeias limit. Tablets were evaluated by different parameters such as weight uniformity, content uniformity, thickness, hardness, in vitro release studies, buoyancy determination and kinetic analysis of dissolution data. The varying concentration of gas generating agent and polymers was found to affect on in-vitro drug release and floating lag time. Tablet showed ≤ 1min lag time, continuance of buoyancy for >12 h. The in-vitro drug release pattern of sacubitril and valsartan optimized floating tablets (F16) was fitted to different kinetic models which showed highest regression (r2 = 0.9838) for Higuchi model. The Optimized formulation (F16) showed no significant change in physical appearance, drug content, floating lag time, in vitro dissolution studies after 75%±5% RH at 40±20C relative humidity for 6 months.  Prepared floating tablets of sacubitril and valsartan may prove to be a potential candidate for safe and effective controlled drug delivery over an extended period of time for gastro retentive drug delivery system.  


2013 ◽  
Vol 16 (1) ◽  
pp. 1-9
Author(s):  
Shahriar Ahmed ◽  
Mehrina Nazmi ◽  
Ikramul Hasan ◽  
Sabiha Sultana ◽  
Shimul Haldar ◽  
...  

Fexofenadine HCl immediate release tablets were designed to increase the dissolution rate by using superdisintegrants. Different formulations of Fexofenadine HCl were prepared by direct compression method. These formulations were evaluated for hardness, thickness, friability, weight variation, disintegration time, and in vitro dissolution study. The drug release from the formulations were studied according to USP specification (USP paddle method at 50 rpm for 60 minutes) maintaining the temperature to 37°C. Sodium starch glycolate, cross carmellose sodium, crospovidone (kollidon CL), ludiflash and xanthan gum were used in 3%, 6% and 8% concentrations as superdisintegrants. Thus, the ratio of superdisintegrants was changed whereas all the other excipients as well as the active drug (Fexofenadine HCl) remained same in every formulation. Here, 0.001N HCl was used as dissolution medium according to USP and absorbances were determined by using UV spectrophotometer at 217 nm. The F-3 and F-6 formulation prepared by 8% of Sodium starch glycolate and 8% of Cross carmellose sodium showed 99.99% drug release within 30 minutes and 45 minutes, respectively. The disintegration times of F-3 and F-6 formulation were within 9 seconds. The interactions between drug and excipients were characterized by FTIR spectroscopic study. DOI: http://dx.doi.org/10.3329/bpj.v16i1.14483 Bangladesh Pharmaceutical Journal 16(1): 1-9, 2013


Author(s):  
Srinivasa Rao Baratam ◽  
Vijayaratna J

Objective: The aim of the study was to develop a floating drug delivery system of levofloxacin (LVF) hemihydrate for sustained drug delivery to improve the extended retention in the stomach, oral bioavailability, and local site-specific action in the stomach. Methods: Preparation of LVF tablets using melt granulation method using hydroxypropyl methylcellulose (HPMC) K4M with sodium bicarbonate as gas generating agent. From LFTA1 to LFTA5, formulations were developed and evaluated for floating properties for swelling characteristics and in vitro drug release studies. In vitro dissolution was carried out using USP II paddle method using 0.1N HCI pH buffer at 50 rpm and samples were measured at 294 nm using ultraviolet-visible spectroscopy. Results: Obtained Fourier-transform infrared charts indicated that there is no positive evidence for the interaction between LVF and ingredients of the optimized formula. In vitro drug release was performed and drug release kinetics were evaluated using the linear regression method and were found to be followed the zero-order release by diffusion controlled release. Optimized formula was found to be LFTA4 with 20% of a polymer with 99.03% of drug release with 12 h of floating time and 32 s floating lag time. Conclusion: Matrix tablets (LFTA4) formulated employing 20% HPMC K4M are best suited to be used for gastroretentive dosage form of LVF.


Author(s):  
P. V. Swamy ◽  
Laeeq Farhana ◽  
S. B. Shirsand ◽  
Md.Younus Ali ◽  
Ashokgoud Patil

Carvedilol (non-cardio selective b-blocker) is an antihypertensive used in management of hypertension, angina pectoris and heart failure.  But its oral bioavailability is about 25-35% only due to significant degree of first pass metabolism.  It has gastrointestinal side effects such as diarrhea, gastric pain and irritation.  Hence, rectal suppositories of carvedilol were developed by using different water-soluble polymeric bases like gelatin and agar-agar using propylene glycol as plasticizer. The gelatin suppositories were disintegrating/dissolving type while gelatin–agar based suppositories were non-disintegrating/non-melting. All the formulations were evaluated for various physical parameters like weight variation,  drug content uniformity, liquefaction time, micro-melting range, in vitro dissolution, short-term stability and drug-excipient interaction (FTIR).  The mechanism of drug release was diffusion controlled and follows first order kinetics in majority of cases. The results suggested that when gelatin is replaced up to 25% w/w with agar, liquefaction time and drug release were not appreciably affected; higher proportions of agar exhibited incomplete and slow release.  Stability studies conducted at 25±3º C and 60±5% relative humidity for three months indicated that the formulations were stable in the drug-content and in vitro drug release rate (p<0.05).


Author(s):  
Dumpeti Janardhan ◽  
Sreekanth Joginapally ◽  
Bharat V. ◽  
Rama Subramaniyan P.

The purpose of this investigation was to prepare a gastroretentive drug delivery system of Ofloxacin. Ofloxacin is a fluoroquinolone antibacterial which acts by inhibiting the topoisomerase enzyme which is essential in the reproduction of the bacterial DNA. It is highly soluble in acidic media and precipitates in alkaline media thereby losing its solubility. Hence, a gastroretentive system was developed to enhance the bioavailability by retaining it in the acidic environment of the stomach. Different formulations were formulated using various concentrations of hydroxy propyl methyl cellulose, sodium carboxy methyl cellulose, sodium bicarbonate and citric acid. The formulations were evaluated for quality control tests and all the physical parameters evaluated are within the acceptable limits of Indian Pharmacopoeia. All the formulations were subjected to in-vitro dissolution studies and compared with the marketed formulation. The floating lag time was below 15 seconds for all the formulations except F1 and F2. The floating duration was found to be more than 24 hours in all except F1, F2 and F10. Formulations F7 and F8 were used to study the effect of sodium bicarbonate and formulations F9 and F10 for the effect of hardness on the drug release. Drug release kinetics was studied for prepared formulations and optimized formulation F5 was found to follow zero order kinetics with r2 =0.993. The statistical analysis of the parameters of dissolution data obtained before and after storage for 3 months at 25°C/ 60%RH and 40°C/75%RH showed no significant change indicating the two dissolution profiles were similar.


Author(s):  
A. Bhavani ◽  
B. Hemalatha ◽  
K. Padmalatha

The present focus is on the development of sustained release formulations due to its inherent boons. There are several advantages of sustained release drug delivery over conventional dosage forms like improved patient compliance, reduction in fluctuation and increased safety margin of potent drug. The present study was aimed to prepare a sustained drug delivery system to design a controlled release oral dosage form of Cefpodoxime proxetil. The sustained release matrix tablets of Cefpodoxime proxetil were prepared by wet granulation and evaluated for different parameters such as weight variation, drug content, thickness, hardness, friability and In vitro release studies. The in vitro dissolution study was carried out for 12 hours using USP (Type- II) paddle apparatus in hydrochloride (0.1N) as dissolution media for first 2 hours and phosphate buffer (pH 6.8) for next 10 hours. Based on the in vitro dissolution data, formulation F8 was selected as the best formulation from Cefpodoxime proxetil formulations (F1 – F9) as the drug release was retarded up to 12 hours with 96.29 % and followed zero order release kinetics & drug release mechanism was diffusion.


2014 ◽  
Vol 50 (4) ◽  
pp. 799-818 ◽  
Author(s):  
Tariq Ali ◽  
Muhammad Harris Shoaib ◽  
Rabia Ismail Yousuf ◽  
Sabahat Jabeen ◽  
Iyad Naeem Muhammad ◽  
...  

The aim of the present study was to develop tizanidine controlled release matrix. Formulations were designed using central composite method with the help of design expert version 7.0 software. Avicel pH 101 in the range of 14-50% was used as a filler, while HPMC K4M and K100M in the range of 25-55%, Ethylcellulose 10 ST and 10FP in the range of 15 - 45% and Kollidon SR in the range of 25-60% were used as controlled release agents in designing different formulations. Various physical parameters including powder flow for blends and weight variation, thickness, hardness, friability, disintegration time and in-vitro release were tested for tablets. Assay of tablets were also performed as specified in USP 35 NF 32. Physical parameters of both powder blend and compressed tablets such as compressibility index, angle of repose, weight variation, thickness, hardness, friability, disintegration time and assay were evaluated and found to be satisfactory for formulations K4M2, K4M3, K4M9, K100M2, K100M3, K100M9, E10FP2, E10FP9, KSR2, KSR3 & KSR9. In vitro dissolution study was conducted in 900 ml of 0.1N HCl, phosphate buffer pH 4.5 and 6.8 medium using USP Apparatus II. In vitro release profiles indicated that formulations prepared with Ethocel 10 standard were unable to control the release of drug while formulations K4M2, K100M9, E10FP2 & KSR2 having polymer content ranging from 40-55% showed a controlled drug release pattern in the above mentioned medium. Zero-order drug release kinetics was observed for formulations K4M2, K100M9, E10FP2 & KSR2. Similarity test (f2) results for K4M2, E10FP2 & KSR2 were found to be comparable with reference formulation K100M9. Response Surface plots were also prepared for evaluating the effect of independent variable on the responses. Stability study was performed as per ICH guidelines and the calculated shelf life was 24-30 months for formulation K4M2, K100M9 and E10FP2.


Sign in / Sign up

Export Citation Format

Share Document