scholarly journals Strategy for Rice Disease Management in Bangladesh

2021 ◽  
Vol 25 (1) ◽  
pp. 23-36
Author(s):  
MT Khatun ◽  
B Nessa ◽  
MU Salam ◽  
MS Kabir

Disease is one of the most limiting biotic factors that affects rice production worldwide. In Bangladesh, there are 10 rice diseases considered as major, which cause economic loss in farmers’ fields. Therefore, the aim of this article is to explore all the feasible avenues of technology deployment on rice disease management to restrict the disease infection at minimum level and thus minimize economic loss. The article is generated using data and/or infromation from published and unpublished works and incorporating authors’ experience. It is evident that periodically (odd year) a disease outbreak or epidemic occurred in Bangladesh such as blast. Under epidemic situation, research findings estimated a yield loss of up to 98% at the highest disease severity level of infection of blast. On the other hand, field survey indicated the highest of 65.4% yield loss from severly infected field with the disease. To overcome the epidemics in odd years and to keep the loss under economic threshold level, it is necessary to undertake preventive measures such as planting of resistant or tolerant varieties, use of disease-free seeds from healthy plants, use of balanced fertilizer where applicable, and following feasible crop rotations. Currently, it is urgent need for developing strong and precise weather-based disease-risk forecasting system at least one week’s lead time based on real-time weather data. Subsequent quick management options such as disease-specific fungicidal treatment should be communicated to all stakeholders using fast-delivery media such as TV channels and SMS could be efficient and effective ways to address the disease outbreak under epidemic situation. To address annualized yield loss, it is suggested to execute interventions like effective training to the root level (both for farmers and extension personnel) and conducting demonstration in farmers fields, regular field monitoring, digitalization in disease management sector, revive indigenous technologies as appropriate, and improving rice production system. To continously improve rice disease management sector, this paper has proposed an innovative action for three decades through to 2050 under the banner ‘Location, Variety and Disease Specific Smart Management’ on research, development and extension. Bangladesh Rice J. 25 (1) : 23-36, 2021

2021 ◽  
Vol 25 (1) ◽  
pp. 1-22
Author(s):  
MP Ali ◽  
B Nessa ◽  
MT Khatun ◽  
MU Salam ◽  
MS Kabir

The damage caused by insect pest is the continual factor for the reduction of rice production. To date, 232 rice insect pest species are identified in Bangladesh and more than 100 species of insects are considered pests in rice production systems globally, but only about 20 - 33 species can cause significant economic loss. The major goal of this study is to explore all the possible ways of developed and proposed technologies for rice insect pests management and minimize economic losses. Insect pests cause 20% average yield loss in Asia where more than 90% of the world's rice is produced. In Bangladesh, outbreak of several insects such as rice hispa, leafroller, gallmidge, stem borers and brown planthopper (BPH) occurs as severe forms. Based on previous reports, yield loss can reach upto 62% in an outbreak situation due to hispa infestation. However, BPH can cause 44% yield loss in severe infestested field. To overcome the outbreaks in odd years and to keep the loss upto 5%, it is necessary to take some preventive measures such as planting of resistant or tolerant variety, stop insecticide spraying at early establishment of rice, establish early warning and forecasting system, avoid cultivation of susceptible variety and following crop rotation. Subsequent quick management options such as insecticidal treatment for specific insect pest should also be broadcasted through variety of information systems. Advanced genomic tool can be used to develop genetically modified insect and plants for sustainable pest management. In addition, to stipulate farmers not use insecticides at early crop stgae and minimize general annualized loss, some interventions including training rice farmers, regular field monitoring, digitalization in correct insect pests identification and their management (example; BRRI rice doctor mobile app), and demonstration in farmers field. Each technology itself solely or combination of two or more or all the packages can combat the insect pests, save natural enemies, harvest expected yield and contribute to safe food production in Bangladesh. Bangladesh Rice J. 25 (1) : 1-22, 2021


2017 ◽  
Vol 107 (2) ◽  
pp. 158-162 ◽  
Author(s):  
G. Hughes ◽  
N. McRoberts ◽  
F. J. Burnett

Predictive systems in disease management often incorporate weather data among the disease risk factors, and sometimes this comes in the form of forecast weather data rather than observed weather data. In such cases, it is useful to have an evaluation of the operational weather forecast, in addition to the evaluation of the disease forecasts provided by the predictive system. Typically, weather forecasts and disease forecasts are evaluated using different methodologies. However, the information theoretic quantity expected mutual information provides a basis for evaluating both kinds of forecast. Expected mutual information is an appropriate metric for the average performance of a predictive system over a set of forecasts. Both relative entropy (a divergence, measuring information gain) and specific information (an entropy difference, measuring change in uncertainty) provide a basis for the assessment of individual forecasts.


2017 ◽  
Vol 5 (3) ◽  
pp. 107-119 ◽  
Author(s):  
Henok Kurabachew ◽  
Getachew Ayana

Bacterial wilt caused by Ralstonia solanacearum is one of the most devastating plant diseases of economically important crops mainly Solanaceous family such as tomato, potato, pepper and eggplant. These crops play a significant role primarily as sources of income and food security for the small scale farming community in Ethiopia. The occurrence of bacterial wilt disease in Ethiopia was reported in 1956 and is known to cause significant yield loss on different Solanaceous crops in different parts of the country. On the basis of conventional characterization and classification, the strains of R. solanacearum found in Ethiopia have been identified as biovar 1 and 2. Recent characterization of R. solanacearum strains based on phylotype grouping using multiplex PCR and partial endoglucanase gene sequencing identified the occurrences of phylotype II and III. The association of biovar and phylotyping schemes indicated that phylotype II comprises only biovar 2, and phylotype III comprises strains of biovar 1 and biovar 2. The importance of the disease on Solanaceous crop is increasing from time to time specially in potato producing areas of the country. Apart from Solanaceous crops, the disease has also been posing a catastrophic damage to ginger production. Latently infected ginger rhizomes and potato seed tuber and decreasing of land holdings that limit crop rotation have contributed to the wider spread of the disease. In this review attempt has been made to summarize relevant scientific studies on this economically important disease in Ethiopia as well as its different disease management options, challenges and future considerations. Because, there is no single effective control measure against the target pathogen so far, a well-coordinated effort is required to develop an integrated disease management program that will help to minimize the damage and yield loss caused by the disease.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Buddhadeb Roy ◽  
Shailja Dubey ◽  
Amalendu Ghosh ◽  
Shalu Misra Shukla ◽  
Bikash Mandal ◽  
...  

AbstractLeaf curl, a whitefly-borne begomovirus disease, is the cause of frequent epidemic in chili. In the present study, transmission parameters involved in tripartite interaction are estimated to simulate disease dynamics in a population dynamics model framework. Epidemic is characterized by a rapid conversion rate of healthy host population into infectious type. Infection rate as basic reproduction number, R0 = 13.54, has indicated a high rate of virus transmission. Equilibrium population of infectious host and viruliferous vector are observed to be sensitive to the immigration parameter. A small increase in immigration rate of viruliferous vector increased the population of both infectious host and viruliferous vector. Migrant viruliferous vectors, acquisition, and transmission rates as major parameters in the model indicate leaf curl epidemic is predominantly a vector -mediated process. Based on underlying principles of temperature influence on vector population abundance and transmission parameters, spatio-temporal pattern of disease risk predicted is noted to correspond with leaf curl distribution pattern in India. Temperature in the range of 15–35 °C plays an important role in epidemic as both vector population and virus transmission are influenced by temperature. Assessment of leaf curl dynamics would be a useful guide to crop planning and evolution of efficient management strategies.


2017 ◽  
Vol 79 (03) ◽  
pp. 262-268 ◽  
Author(s):  
Thavakumar Subramaniam ◽  
Mary Leader ◽  
Rory McConn-Walsh ◽  
James O'Neill ◽  
Peter Lacy ◽  
...  

Objectives Evaluation of the changing trends in esthesioneuroblastoma in an Irish context and review of management options nationally to clarify the best current therapeutic approach by comparing with international research on this uncommon malignancy. Design Retrospective review. Setting Tertiary referral center. Participants All patients presenting with esthesioneuroblastoma in Beaumont hospital or on the National Cancer Registry of Ireland between 1994 and 2013. Main Outcome Measures Recurrence-free and overall survival. Results During the study period, 32 cases of esthesioneuroblastoma were diagnosed (0.4 per million per year). Average age at diagnosis was 57 years; however, two cases were under 20. The majority (62.5%) were male. Patients predominantly presented with epistaxis or nasal congestion (73%), while two cases were identified incidentally on radiological investigations. Twenty-seven cases underwent primary surgical management (two post neo-adjuvant treatment) with seventeen requiring bifrontal craniotomy. Twenty-four of these received postoperative radiation therapy. Overall, 5-year survival was 65%. Kadish A/B patients exhibited 100% 5-year disease-specific survival versus 54% in Kadish C/D (p = 0.011). Hyams grade I/II patients exhibited 75% 5-year disease-specific survival versus 63% in Hyams grade III/IV (p = 0.005). Patients treated endoscopically exhibited 100% 5-year disease-specific survival versus 51% in those treated via an open approach (p = 0.102). Conclusions Many controversies exist in the diagnosis and management of this condition. Despite this, results from Irish data are mostly concordant with the international literature. The rising incidence of this disease may represent improved pathological recognition. An increasing number of esthesioneuroblastoma cases are being successfully treated via endoscopic surgery.


2017 ◽  
Vol 31 (5) ◽  
pp. 658-665
Author(s):  
Mason L. Young ◽  
Jason K. Norsworthy ◽  
Robert C. Scott ◽  
Lon T. Barber

Benzobicyclon is the first 4-hydroxyphenylpyruvate dioxygenase-inhibiting herbicide pursued for commercial registration in U.S. rice production. A study was conducted in 2015 and 2016 to evaluate the response of eight rice cultivars to post-flood application timings of benzobicyclon at 494 g ai ha-1(proposed 2X rate). ‘Caffey’, ‘CL151’, ‘CLXL745’, ‘Jupiter’, ‘LaKast’, ‘Mermentau’, ‘Roy J’, and ‘XL753’ were evaluated in response to applications of benzobicyclon. The highest level of visible injury was observed in LaKast at 7% in 2015. No visible injury was detected among other cultivars either year at 2 weeks after treatment. In 2015 and 2016, no more than a four-day delay to reach 50% heading occurred across all cultivars. Rough rice yield was not affected by any of the post-flood application timings of benzobicyclon. A second study was conducted in 2016 at three locations throughout Arkansas to investigate the tolerance of 19tropical japonica(inbred and hybrid) and twoindicainbred cultivars to a premix containing benzobicyclon at 494 g ai ha-1and halosulfuron at 72 g ai ha-1 applied 1 week after flooding. Thetropical japonicacultivars have excellent crop safety to benzobicyclon while application to theindicacultivars, Rondo and Purple Marker, expressed severe phytotoxicity. Benzobicyclon caused less than a 2 d delay in heading to thejaponicacultivars. Rough rice yield of thetropical japonicacultivars was not affected by benzobicyclon while yields of bothindicacultivars were negatively affected. Benzobicyclon can safely be applied to drill-seededtropical japonicainbred and hybrid cultivars in a post-flood application without concerns for crop injury. Benzobicyclon should not be used onindicacultivars as it will cause severe injury, delayed heading, and yield loss.


1995 ◽  
Vol 71 (833) ◽  
pp. 136-142 ◽  
Author(s):  
G. D. Chisholm ◽  
S. J. Carne ◽  
J. M. Fitzpatrick ◽  
N. J. George ◽  
J. C. Gingell ◽  
...  

Author(s):  
Sanjeev Kumar ◽  
Sangita Sahni ◽  
Bishun Deo Prasad

Chickpea (Cicer arietinum) is one of the world’s major legume crops and suffers substantial damage from wilt disease caused by Fusarium oxysporum f. sp. ciceri( Padwick) with yield loss over 60 per cent. It is an important soil borne plant pathogen and is difficult to manage by application of chemical pesticides. Moreover, the chemical control is costly and leads to residual effect. A plethora of reports indictes the efforts made to reduce environmental effects and rationalize the use of pesticides and manage the pathogen more effectively through Integration of Disease Management (IDM). Application of soil amendments and specific bio-control agents also incorporated in IDM which has potential to suppress soil-borne pathogens through manipulation of the physicochemical and microbiological environment. Therefore, IDM approach for controlling chickpea Fusarium wilt might be a cost effective and eco-friendly approach.


2021 ◽  
Vol 9 ◽  
Author(s):  
Pham Quy Giang ◽  
Tran Trung Vy

In developing countries in general and in Vietnam in particular, flood induced economic loss of agriculture is a serious concern since the livelihood of large populations depends on agricultural production. The objective of this study was to examine if climate change would exacerbate flood damage to agricultural production with a case study of rice production in Huong Son District of Ha Tinh Province, North-central Vietnam. The study applied a modeling approach for the prediction. Extreme precipitation and its return periods were calculated by the Generalized Extreme Value distribution method using historical daily observations and output of the MRI-CGCM3 climate model. The projected extreme precipitation data was then employed as an input of the Mike Flood model for flood modeling. Finally, an integrated approach employing flood depth and duration and crop calendar was used for the prediction of potential economic loss of rice production. Results of the study show that in comparison with the baseline period, an increase of 49.14% in the intensity of extreme precipitation was expected, while the frequency would increase 5 times by 2050s. As a result, the seriousness of floods would increase under climate change impacts as they would become more intensified, deeper and longer, and consequently the economic loss of rice production would increase significantly. While the level of peak flow was projected to rise nearly 1 m, leading the area of rice inundated to increase by 12.61%, the value of damage would rise by over 21% by 2050s compared to the baseline period. The findings of the present study are useful for long-term agricultural and infrastructural planning in order to tackle potential flooding threats to agricultural production under climate change impacts.


2018 ◽  
Vol 285 (1870) ◽  
pp. 20172265 ◽  
Author(s):  
Jamie M. Caldwell ◽  
Megan J. Donahue ◽  
C. Drew Harvell

Understanding how disease risk varies over time and across heterogeneous populations is critical for managing disease outbreaks, but this information is rarely known for wildlife diseases. Here, we demonstrate that variation in host and pathogen factors drive the direction, duration and intensity of a coral disease outbreak. We collected longitudinal health data for 200 coral colonies, and found that disease risk increased with host size and severity of diseased neighbours, and disease spread was highest among individuals between 5 and 20 m apart. Disease risk increased by 2% with every 10 cm increase in host size. Healthy colonies with severely diseased neighbours (greater than 75% affected tissue) were 1.6 times more likely to develop disease signs compared with colonies with moderately diseased neighbours (25–75% affected tissue). Force of infection ranged from 7 to 20 disease cases per 1000 colonies (mean = 15 cases per 1000 colonies). The effective reproductive ratio, or average number of secondary infections per infectious individual, ranged from 0.16 to 1.22. Probability of transmission depended strongly on proximity to diseased neighbours, which demonstrates that marine disease spread can be highly constrained within patch reefs.


Sign in / Sign up

Export Citation Format

Share Document