scholarly journals Simulation of Intensity, Track and Landfall of Tropical Cyclonic Storm Roanu over the Bay of Bengal Using WRF-ARW Model

Author(s):  
Ariful Alam ◽  
Shammy Ahmed ◽  
Sharmin Rahman ◽  
Umme Habiba ◽  
Muhammad Abul Kalam Mallik ◽  
...  

Almost every year, tropical cyclone forms over the Bay of Bengal in pre-monsoon and post-monsoon which strikes Bangladesh coast and the east coast of India. As the full thermodynamic features of a cyclone is not solved yet, an attempt has been made to simulate the track and landfall of cyclonic disturbances over the Bay of Bengal by using Weather Research and Forecasting (WRF) model. The WRF model (version 3.8) was run in a single domain of 20 km horizontal resolution. The model was run using WRF Single-Moment 3- class microphysics scheme, Kain- Fritsch (new Eta) cumulus physics scheme, Yonsei University planetary boundary layer scheme, revised MM5 surface layer physics scheme, Rapid Radiative Transfer Model (RRTM) for long-wave and Dudhia scheme for short-wave scheme. The model was run for 24-h, 48-h, 72-h and 96-h using the National Centre for Environmental Prediction (NCEP) high-resolution Global Final (FNL) Analysis 6-hourly data using initial and lateral boundary conditions. The model simulated landfall position errors are found 53 km, 129 km, 119km and 23 km and time errors are found 02 E, 06 D, 02 E and 00 for 96-h, 72-h, 48-h and 24-h model run respectively (E indicates Earlier and D indicates Delay). The minimum time and position error is found in 24-hrs simulation. The spatial distribution is captured by the model is almost appropriate but the computational station rainfall is found less than that of observed rainfall. The Dhaka University Journal of Earth and Environmental Sciences, Vol. 10(1), 2021, P 33-45

2018 ◽  
Vol 66 (1) ◽  
pp. 29-35
Author(s):  
Deepa Roy ◽  
Md Abdus Samad ◽  
SM Quamrul Hassan

In this paper an effort has been made to simulate the monsoon Low Pressure System (LPS) and its associated rainfall event of 16-20 August, 2013 using Weather Research and Forecasting (WRF) model. The model was run for 24-h, 48-h and 72-h in a single domain of 10 km horizontal resolution using The National Centre for Environmental Prediction (NCEP) high-resolution Global Final (FNL) Analysis 6-hourly data using initial and lateral boundary conditions. WRF double-moment 5 class micro physics scheme, Kain–Fritsch (new Eta) cumulus physics scheme,Yonsei University planetary boundary layer scheme, Revised MM5 surface layer physics scheme, Unified Noah LSM as land surface model, Rapid Radiative Transfer Model (RRTM) for long-wave and Dudhia scheme for short-wave scheme are used for the simulation. The performance of the model is evaluated analyzing Mean Sea Level Pressure (MSLP), Wind Pattern, Vorticity, Vertical Wind Shear and Rainfall Distribution. The model successfully captured the low pressure system, initial condition, propagation, landfall time and location reasonably well. The model simulated rainfall amount and associated areas sensibly well compared with the observed data by BMD and Tropical Rainfall Measuring Mission (TRMM). Dhaka Univ. J. Sci. 66(1): 29-35, 2018 (January)


2022 ◽  
Vol 12 (3) ◽  
pp. 85-100
Author(s):  
Md Shakil Hossain ◽  
Md Abdus Samad ◽  
SM Arif Hossen ◽  
SM Quamrul Hassan ◽  
MAK Malliak

An attempt has been carried out to assess the efficacy of the Weather Research and Forecasting (WRF) model in predicting the genesis and intensification events of Very Severe Cyclonic Storm (VSCS) Fani (26 April – 04 May 2019) over the Bay of Bengal (BoB). WRF model has been conducted on a single domain of 10 km horizontal resolution using the Global Data Assimilation System (GDAS) FNL (final) data (0.250 × 0.250). According to the model simulated outcome analysis, the model is capable of predicting the Minimum Sea Level Pressure (MSLP) and Maximum Sustainable Wind Speed (MSWS) pattern reasonably well, despite some deviations. The model has forecasted the Lowest Central Pressure (LCP) of 919 hPa and the MSWS of 70 ms-1 based on 0000 UTC of 26 April. Except for the model run based on 0000 UTC of 26 April, the simulated values of LCP are relatively higher than the observations. According to the statistical analysis, MSLP and MSWS at 850 hPa level demonstrate a significantly greater influence on Tropical Cyclone (TC) formation and intensification process than any other parameters. The model can predict the intensity features well enough, despite some uncertainty regarding the proper lead time of the model run. Reduced lead time model run, particularly 24 to 48 hr, can be chosen to forecast the genesis and intensification events of TC with minimum uncertainty. Journal of Engineering Science 12(3), 2021, 85-100


2021 ◽  
Vol 69 (2) ◽  
pp. 101-108
Author(s):  
Md Shakil Hossain ◽  
Md Abdus Samad ◽  
Most Razia Sultana ◽  
MAK Mallik ◽  
Md Joshem Uddin

An attempt has been made to assess the capability of the Weather Research and Forecasting (WRF) model in simulating the track and landfall characteristics of Tropical Cyclone (TC) Fani (25th April – 05th May 2019) over the Bay of Bengal (BoB). WRF model has conducted on a single domain of 10 km horizontal resolution using Global Data Assimilation System (GDAS) data (0.250×0.250). The model predicted outcomes show auspicious agreement with the observed datasets of the Bangladesh Meteorological Department (BMD) and India Meteorological Department (IMD). It is found that the diminished lead time of the model run plays a crucial role in delivering good consistency with the minimum forecast uncertainty. A strong correlation between the track and intensity forecast deviations has also been determined. According to the results, the model simulation which captures the minimum deviation in the intensity forecast also ensures better track prediction of the system. The feasibility of the track and landfall forecast by the model even up to 27 hr advance is reasonably well. Finally, it can be decided that the model is capable to predict the cyclonic storm Fani precisely and it can be chosen confidently for future events over the BoB. Dhaka Univ. J. Sci. 69(2): 101-108, 2021 (July)


2007 ◽  
Vol 7 (20) ◽  
pp. 5391-5400 ◽  
Author(s):  
K. M. Nissen ◽  
K. Matthes ◽  
U. Langematz ◽  
B. Mayer

Abstract. We introduce the improved Freie Universität Berlin (FUB) high-resolution radiation scheme FUBRad and compare it to the 4-band standard ECHAM5 SW radiation scheme of Fouquart and Bonnel (FB). Both schemes are validated against the detailed radiative transfer model libRadtran. FUBRad produces realistic heating rate variations during the solar cycle. The SW heating rate response with the FB scheme is about 20 times smaller than with FUBRad and cannot produce the observed temperature signal. A reduction of the spectral resolution to 6 bands for solar irradiance and ozone absorption cross sections leads to a degradation (reduction) of the solar SW heating rate signal by about 20%. The simulated temperature response agrees qualitatively well with observations in the summer upper stratosphere and mesosphere where irradiance variations dominate the signal. Comparison of the total short-wave heating rates under solar minimum conditions shows good agreement between FUBRad, FB and libRadtran up to the middle mesosphere (60–70 km) indicating that both parameterizations are well suited for climate integrations that do not take solar variability into account. The FUBRad scheme has been implemented as a sub-submodel of the Modular Earth Submodel System (MESSy).


2015 ◽  
Vol 8 (6) ◽  
pp. 2473-2489 ◽  
Author(s):  
J. Ungermann ◽  
J. Blank ◽  
M. Dick ◽  
A. Ebersoldt ◽  
F. Friedl-Vallon ◽  
...  

Abstract. The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) is an airborne infrared limb imager combining a two-dimensional infrared detector with a Fourier transform spectrometer. It was operated aboard the new German Gulfstream G550 High Altitude LOng Range (HALO) research aircraft during the Transport And Composition in the upper Troposphere/lowermost Stratosphere (TACTS) and Earth System Model Validation (ESMVAL) campaigns in summer 2012. This paper describes the retrieval of temperature and trace gas (H2O, O3, HNO3) volume mixing ratios from GLORIA dynamics mode spectra that are spectrally sampled every 0.625 cm−1. A total of 26 integrated spectral windows are employed in a joint fit to retrieve seven targets using consecutively a fast and an accurate tabulated radiative transfer model. Typical diagnostic quantities are provided including effects of uncertainties in the calibration and horizontal resolution along the line of sight. Simultaneous in situ observations by the Basic Halo Measurement and Sensor System (BAHAMAS), the Fast In-situ Stratospheric Hygrometer (FISH), an ozone detector named Fairo, and the Atmospheric chemical Ionization Mass Spectrometer (AIMS) allow a validation of retrieved values for three flights in the upper troposphere/lowermost stratosphere region spanning polar and sub-tropical latitudes. A high correlation is achieved between the remote sensing and the in situ trace gas data, and discrepancies can to a large extent be attributed to differences in the probed air masses caused by different sampling characteristics of the instruments. This 1-D processing of GLORIA dynamics mode spectra provides the basis for future tomographic inversions from circular and linear flight paths to better understand selected dynamical processes of the upper troposphere and lowermost stratosphere.


2018 ◽  
Vol 37 ◽  
pp. 131-145
Author(s):  
Md Mijanur Rahman ◽  
Md Abdus Samad ◽  
SM Quamrul Hassan

An attempt has been made to simulate the thermodynamic features of the thunderstorm (TS) event over Dhaka (23.81°N, 90.41°E) occurred from 1300 UTC to 1320 UTC of 4 April 2015 using Advanced Research dynamics solver of Weather Research and Forecasting model (WRF-ARW). The model was run to conduct a simulation for 48 hours on a single domain of 5 km horizontal resolution utilizing six hourly Global Final Analysis (FNL) datasets from 0600 UTC of 3 April 2015 to 0600 UTC of 5 April 2015 as initial and lateral boundary conditions. Kessler schemes for microphysics, Yonsei University (YSU) scheme for planetary boundary layer (PBL) parametrization, Revised MM5 scheme for surface layer physics, Rapid Radiative Transfer Model (RRTM) for longwave radiation, Dudhia scheme for shortwave radiation and Kain–Fritsch (KF) scheme for cumulus parameterization were used. Hourly outputs produced by the model have been analyzed numerically and graphically using Grid Analysis and Display System (GrADS). Deep analyses were carried out by examining several thermodynamic parameters such as mean sea level pressure (MSLP), wind pattern, vertical wind shear, vorticity, temperature, convective available potential energy (CAPE), relative humidity (RH) and rainfall. To validate the model performance, simulated values of MSLP, maximum and minimum temperature and RH were compared with observational data obtained from Bangladesh Meteorological Department (BMD). Rainfall values were compared with that of BMD and Tropical Rainfall Measuring Mission (TRMM) of National Aeronautics and Space Administration (NASA). Based on the comparisons and validations, the present study advocates that the model captured the TS event reasonably well.GANIT J. Bangladesh Math. Soc.Vol. 37 (2017) 131-145


2022 ◽  
Vol 12 (3) ◽  
pp. 29-43
Author(s):  
Samarendra Karmakar ◽  
Mohan Kumar Das ◽  
Md Quamrul Hassam ◽  
Md Abdul Mannan

The diagnostic and prognostic studies of thunderstorms/squalls are very important to save live and loss of properties. The present study aims at diagnose the different tropospheric parameters, instability and synoptic conditions associated the severe thunderstorms with squalls, which occurred at different places in Bangladesh on 31 March 2019. For prognostic purposes, the severe thunderstorms occurred on 31 March 2019 have been numerically simulated. In this regard, the Weather Research and Forecasting (WRF) model is used to predict different atmospheric conditions associated with the severe storms. The study domain is selected for 9 km horizontal resolution, which almost covers the south Asian region. Numerical experiments have been conducted with the combination of WRF single-moment 6 class (WSM6) microphysics scheme with Yonsei University (YSU) PBL scheme in simulation of the squall events. Model simulated results are compared with the available observations. The observed values of CAPE at Kolkata both at 0000 and 1200 UTC were 2680.4 and 3039.9 J kg-1 respectively on 31 March 2019 and are found to be comparable with the simulated values. The area averaged actual rainfall for 24 hrs is found is 22.4 mm, which complies with the simulated rainfall of 20-25 mm for 24 hrs. Journal of Engineering Science 12(3), 2021, 29-43


2011 ◽  
Vol 139 (4) ◽  
pp. 1279-1291 ◽  
Author(s):  
Esa-Matti Tastula ◽  
Timo Vihma

Abstract The standard and polar versions 3.1.1 of the Weather Research and Forecasting (WRF) model, both initialized by the 40-yr ECMWF Re-Analysis (ERA-40), were run in Antarctica for July 1998. Four different boundary layer–surface layer–radiation scheme combinations were used in the standard WRF. The model results were validated against observations of the 2-m temperature, surface pressure, and 10-m wind speed at 9 coastal and 2 inland stations. The best choice for boundary layer and radiation parameterizations of the standard WRF turned out to be the Yonsei University boundary layer scheme in conjunction with the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5) surface layer scheme and the Rapid Radiative Transfer Model for longwave radiation. The respective temperature bias was on the order of 3°C less than the biases obtained with the other combinations. Increasing the minimum value for eddy diffusivity did, however, improve the performance of the asymmetric convective scheme by 0.8°C. Averaged over the 11 stations, the error growths in 24-h forecasts were almost identical for the standard and Polar WRF, but in 9-day forecasts Polar WRF gave a smaller 2-m temperature bias. For the Vostok station, however, the standard WRF gave a less positively biased 24-h temperature forecast. On average, the polar version gave the least biased surface pressure simulation. The wind speed simulation was characterized by low correlation values, especially under weak winds and for stations surrounded by complex topography.


2018 ◽  
Vol 57 (3) ◽  
pp. 493-515 ◽  
Author(s):  
S. K. Mukkavilli ◽  
A. A. Prasad ◽  
R. A. Taylor ◽  
A. Troccoli ◽  
M. J. Kay

AbstractDirect normal irradiance (DNI) is the main input for concentrating solar power (CSP) technologies—an important component in future energy scenarios. DNI forecast accuracy is sensitive to radiative transfer schemes (RTSs) and microphysics in numerical weather prediction (NWP) models. Additionally, NWP models have large regional aerosol uncertainties. Dust aerosols can significantly attenuate DNI in extreme cases, with marked consequences for applications such as CSP. To date, studies have not compared the skill of different physical parameterization schemes for predicting hourly DNI under varying aerosol conditions over Australia. The authors address this gap by aiming to provide the first Weather and Forecasting (WRF) Model DNI benchmarks for Australia as baselines for assessing future aerosol-assimilated models. Annual and day-ahead simulations against ground measurements at selected sites focusing on an extreme dust event are run. Model biases are assessed for five shortwave RTSs at 30- and 10-km grid resolutions, along with the Thompson aerosol-aware scheme in three different microphysics configurations: no aerosols, fixed optical properties, and monthly climatologies. From the annual simulation, the best schemes were the Rapid Radiative Transfer Model for global climate models (RRTMG), followed by the new Goddard and Dudhia schemes, despite the relative simplicity of the latter. These top three RTSs all had 1.4–70.8 W m−2 lower mean absolute error than persistence. RRTMG with monthly aerosol climatologies was the best combination. The extreme dust event had large DNI mean bias overpredictions (up to 4.6 times), compared to background aerosol results. Dust storm–aware DNI forecasts could benefit from RRTMG with high-resolution aerosol inputs.


2018 ◽  
Author(s):  
Rohit Mangla ◽  
Indu Jayaluxmi

Abstract. This study evaluates the all-sky GPM/GMI radiances towards assimilation in regional mesoscale model at 183 ± 7 GHz. The radiative transfer model (RTM) namely RTTOV-SCATT is used for the simulation of three tropical cyclones (hudhud, vardah and kyant respectively). Within the RTM, the performance of non-spherical Discrete Dipole Approximation (DDA) shapes (sector snowflake, 6-bullet rosette, block-column and thinplate) are evaluated. The input data used in RTTOV-SCATT includes vertical hydrometeor profiles, humidity and surface fluxes. In addition, the first guess simulations from Weather Research Forecast (WRF) model were executed at 15 km resolution using ERA-Interim reanalysis datasets. Results indicate that observed minus first guess (FG departures) are symmetric with DDA shapes. The normalized probability density function of FG departures shows large number of spatially correlated samples between clear-sky and poorly forecasted region. Quality control (QC) method was performed to eliminate large FG departures due to instrumental anomalies or poor forecast of clouds and precipitation. The goodness of fit test, h-statistics and skewness of observed and simulated distribution show optimum results for thinplate shape in all the convective events. We also tested the high resolution ERA-5 reanalysis datasets for the simulation of all-sky radiances using thinplate shape. Results illustrate a potential to integrate the GMI sensor data within a WRF data assimilation system.


Sign in / Sign up

Export Citation Format

Share Document