scholarly journals Analisis Kualitas Daya Listrik Pada Penggunaan Modul Surya Sederhana Untuk Pompa Air Rumah Tangga

Kilat ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 42-52
Author(s):  
Syarif Hidayat Hidayat

The use of solar modules to meet the needs of everyday life is something interesting to use. Harmonics is a phenomenon of power quality deviation that can distort voltage and current waveforms. In this experiment, a simple inverter with 1000 W capability will be used, then will be loaded with water pumps and other household appliances. The method used is to measure the power factor and harmonics generated by using a measuring device. In this process needs to be assessed and will be seen using the ability of the inverter and the quality of the electric power generated in this solar power generation system. Based on the results of measurements and calculations on a water pump with  a power of 680 W and 1 incandescent lamp with a power of 60 Watts, the value of the power factor generated is 0.95 while the total harmonic voltage distortion (THDv) value is when the water pump load is THDv 1.9 % and at THDv incandescent lamps 1.6%.

2021 ◽  
Vol 5 (1) ◽  
pp. PRESS
Author(s):  
Faisal Irsan Pasaribu ◽  
Noorly Evalina ◽  
Partaonan Harahap

The use of a Water Pump at the initial start is the use of electricity with a large capacity which sometimes faces various kinds of efficiency problems. These problems include an increase in current that occurs in the channel by improving the quality of electric power, especially in the electrical system in the area of the use of the Water Pump, which is expected to be able to improve the quality of electric power. The purpose of the research was to design an inverter starting energy saver as an effort to improve power quality for electricity savings, electric power efficiency in water pumps. This improvement is also expected to be able to reduce the cost of using electricity bills, especially in the use of water pumps. To be able to carry out the improvement of the quality of the electric power, it is necessary to calculate the active power and apparent power when the water pump is used. After performing these calculations, the installation of the inverter starting circuit saver electricity will be used. By carrying out these steps by installing a series of inverters that can improve the quality of electrical power. And by using the inverter circuit starting Energy saver, it is clear that it produces an active power efficiency value of 82% of the active power before using the 272 Watt inverter circuit and active power after using the 223.9 Watt inverter circuit, and also produces an apparent power efficiency value of 83% before using the circuit. inverter 275.18 VA and apparent power after using the inverter circuit 227.94 VA


2018 ◽  
Vol 64 ◽  
pp. 06008
Author(s):  
Cui JI ◽  
Siming HUA ◽  
Bingbing ZOU ◽  
Hua ZHANG ◽  
Chang DIAO ◽  
...  

Solar photovoltaic (PV) has been developed rapidly due to its clean and green renewable characteristics. The connection of photovoltaic power generation to the traditional grid system is bound to bring power quality problems. Based on above, this paper introduces the power quality testing method of photovoltaic grid-connected power grid in detail. And then takes the Shanghai Qingpu Nanrong distributed photovoltaic power generation for example, which is the largest single roof photovoltaic power station in Shanghai by far, to use the method to test its power quality. The power quality index include harmonic, voltage imbalance, and frequency deviation. The test and analysis provide a reference for the monitoring and analysis of power quality of photovoltaic grid-connected power grid.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1527
Author(s):  
R. Senthil Kumar ◽  
K. Mohana Sundaram ◽  
K. S. Tamilselvan

The extensive usage of power electronic components creates harmonics in the voltage and current, because of which, the quality of delivered power gets affected. Therefore, it is essential to improve the quality of power, as we reveal in this paper. The problems of load voltage, source current, and power factors are mitigated by utilizing the unified power flow controller (UPFC), in which a combination of series and shunt converters are combined through a DC-link capacitor. To retain the link voltage and to maximize the delivered power, a PV module is introduced with a high gain converter, named the switched clamped diode boost (SCDB) converter, in which the grey wolf optimization (GWO) algorithm is instigated for tracking the maximum power. To retain the link-voltage of the capacitor, the artificial neural network (ANN) is implemented. A proper control of UPFC is highly essential, which is achieved by the reference current generation with the aid of a hybrid algorithm. A genetic algorithm, hybridized with the radial basis function neural network (RBFNN), is utilized for the generation of a switching sequence, and the generated pulse has been given to both the series and shunt converters through the PWM generator. Thus, the source current and load voltage harmonics are mitigated with reactive power compensation, which results in attaining a unity power factor. The projected methodology is simulated by MATLAB and it is perceived that the total harmonic distortion (THD) of 0.84% is attained, with almost a unity power factor, and this is validated with FPGA Spartan 6E hardware.


2021 ◽  
pp. 1-38
Author(s):  
Hailie Suk ◽  
Ayushi Sharma ◽  
Anand Balu Nellippallil ◽  
Ashok Das ◽  
John Hall

Abstract The quality of life (QOL) in rural communities is improved through electrification. Microgrids can provide electricity in areas where grid access to electricity is infeasible. Still, insufficient power capacity hinders the very progress that microgrids promote. Therefore, we propose a decision-making framework to manage power distribution based on its impact on the rural QOL. Parameters are examined in this paper to represent the QOL pertaining to water, safety, education, and leisure/social activities. Each parameter is evaluated based on condition, community importance, and energy dependence. A solution for power allocation is developed by executing the compromise decision support problem (cDSP) and exploring the solution space. Energy loads, such as those required for powering water pumps, streetlamps, and household devices are prioritized in the context of the QOL. The technique also allows decision-makers to update the power distribution scheme as the dynamics between energy production and demand change over time. In this paper, we propose a framework for connecting QOL and power management. The flexibility of the approach is demonstrated using a problem with varying scenarios that may be time-dependent. The work enables sustainable energy solutions that can evolve with community development.


2021 ◽  
Vol 2 (2) ◽  
pp. 29-35
Author(s):  
Dmitry A. Sorokin ◽  
◽  
Sergey I. Volskiy ◽  
Jaroslav Dragoun ◽  
◽  
...  

The paper suggests a control system of a three-phase power factor corrector. The study of the control system operation is carried out and the expressions for calculating the permissible values of error amplifier factors are obtained. The influence of the error amplifier parameters on phase current quality is investigated. The dependence of total harmonic distortion input current on a combination of error amplifier parameters is obtained at a given value of power factor. The conditions under which the total harmonic distortion input current has the minimum value are found out. This article is of interest to power electronics engineers, who are aimed at developing a three-phase power factor corrector.


2012 ◽  
Vol 134 (4) ◽  
Author(s):  
Zhengmei Li ◽  
Qiong Zhou ◽  
Jianping Tang ◽  
Jianwen Wang ◽  
Qi An

Taking the water pump bearing with one roller row (WR)-type auto water pump bearing as a research sample, an analytical calculation method is developed to improve the accuracy and efficiency of the current calculations for the bearing loads and life in engineering application. Considering the misalignment due to the deflection of the bearing spindle, the bearing internal loads and deformations under the action of the complicated external space loads are obtained. The bearing fatigue life including the lives of the rollers and the balls is also calculated with considering the non-normal load distribution caused by the spindle deflection and the roller tilt. The bearing load and life calculation results are compared with those calculated by the traditional method in which the deflection of the bearing spindle and the roller tilt are ignored. The effects of the bearing spindle deflection on the load distribution and the life of the auto water pump bearing are analyzed and discussed. The life decrease in the auto water pump bearing is significant due to the deflection of the bearing spindle and it is recommended to give more attention to this deflection for the high quality of the bearing design and calculation.


2020 ◽  
Vol 29 (54) ◽  
pp. e11604
Author(s):  
Esteban Rojas-Osorio ◽  
Andrés Julián Saavedra-Montes ◽  
Carlos Andrés Ramos-Paja

This paper evaluates the effect of the voltage harmonic distortion over the efficiency of a compact fluorescent lamp that is fed with a constant RMS voltage and constant frequency. Several works have been published about the assessment of compact fluorescent lamps, but the effect of the voltage distortion over the efficiency is still an open topic. This work focuses on designing an experiment to estimate the efficiency of a compact fluorescent lamp while changing the voltage harmonic distortion of the power supply. First, a mathematical model that represents a bus susceptible to harmonic distortion (high impedance) that feeds the compact fluorescent lamp is analyzed. Then the mathematical model is reproduced through a test bench in a laboratory of rotating electrical machines. The test bench produces a three-phase bus with constant voltage and frequency, and variable voltage harmonic distortion. The compact fluorescent lamp is subjected to varying harmonic voltage distortion while recording its electrical variables and the produced lumens to estimate its efficiency. That is a practical approach to calculate the lamp efficiency while several works limit their scope measuring only the efficiency of the input converter. The experimental results show that a variation of the voltage harmonic distortion of 8 % on a compact fluorescent lamp reduces its efficiency. Those results put into evidence the importance of regulating harmonic distortion limits to reduce or prevent the increment of power losses caused by harmonic components.


Sign in / Sign up

Export Citation Format

Share Document