scholarly journals BIOSINTESIS NANOPARTIKEL PERAK MENGGUNAKAN EKSTRAK BUAH Passiflora flavicarva (MARKISA) UNTUK MENDETEKSI LOGAM BERAT

Alotrop ◽  
2017 ◽  
Vol 1 (1) ◽  
Author(s):  
Dina Maryani ◽  
M. Lutfi Firdaus ◽  
Nurhamidah Nurhamidah

The aim of this research was to synthesize silver nanoparticle (NPP) by using Passiflora flavicarva (Markisa) fruit extract as detector of heavy metal. The NPP particles produced were determined by their optimum condition on the ratio of the volume of  Passiflora flavicarva passion fruit extract to AgNO3 and the reaction time. The silver nanoparticles produced under optimum conditions will be tested for selectivity against several metals that are often present in the environment, once the selective metal is known then it can be sensitized to the metal using a UV-Vis spectrophotometer to determine the minimal concentrations that can be detected by the silver nanoparticles Formed. The results showed that Passiflora flavicarva passion fruit extracts could be used for the biosynthesis of  NPP particles because they contain vitamin C and flavonoids capable of reducing Ag+ to Ag0 in the form of NPP. The optimal conditions for forming NPP particles are in the 1: 2 ratio with a 2 hour reaction time. From the results of selectivity test of NPP to some heavy metals that often exist in environment, it is known that NPP selective to mercury metal. It was found that selective mercury was followed by a sensitivity test with a UV-Vis spectrophotometer, with sensitive NPP  up to a concentration of 6.7 ppm. From the results of this study it can be concluded that NPP particles formed can be used to detect mercury metal up to a minimum concentration of 6.7 ppm.

2019 ◽  
Vol 42 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Sadia Qayyum ◽  
Ke Meng ◽  
Sidra Pervez ◽  
Faiza Nawaz ◽  
Changsheng Peng

Abstract Soil contamination with heavy metal content is a growing concern throughout the world as a result of industrial, mining, agricultural and domestic activities. Fungi are the most common and efficient group of heavy metal resistant microbe family which have potential for metal bioleaching. The use of filamentous fungi in bioleaching of heavy metals from contaminated soil has been developed recently. The current study intends to isolate a strain with the ability to degrade the pH value of the liquid medium. Identification results based on morphological and molecular biological analysis gave a 98% match to Aspergillus flavus. Batch experiments were conducted to select the optimal conditions for bioleaching process which indicated that 130 mg/ L sucrose, neutral pH and temperature of 30°C were more suitable during 15-day bioleaching experiments using A. flavus. In one-step bioleaching, the bioleaching efficiencies were 18.16% for Pb, 39.77% for Cd and 58.22% for Zn+2, while two-step bioleaching showed efficiencies of 16.91% for Pb, 49.66% for Cd and 65.73% for Zn+2. Overall, this study indicates that bioleaching of heavy metals in contaminated soil using A. flavus has the potential for contaminated soil remediation.


2012 ◽  
Vol 573-574 ◽  
pp. 1129-1133 ◽  
Author(s):  
Ji Cai Qiu

The earthworm is an omnivorous animal low saprophytic, has a strong ability to decompose organic waste. The earthworm can directly grows on dung, consume a large amount of organic waste, numerous research reports, earthworm on heavy metal elements have very strong enrichment. Therefore, the use of earthworms as a bioreactor for animal feces, excessive heavy metals to biological concentration, reduce the content of heavy metals in animal feces, is a task that is worth to discuss. Taking the rural animal feces in the largest number, the most widely distributed of cow dung as study objects, to carry out the earthworm absorption in cow dung, Zn Pb Cu, the study of the optimum conditions for the further study of Earthworm on cattle manure, heavy metal enrichment techniques provide a basis.


2015 ◽  
Vol 798 ◽  
pp. 390-394
Author(s):  
Saptono Hadi ◽  
Budi Hastuti ◽  
Nurina Tulus Setiawati

Research on the application of chitosan derived from oyster (Anadara inflata) shell as adsorbent for heavy metal Cu (II) has been conducted. Optimum conditions for adsorption, including pH, reaction time, and mass of adsorbent were investigated. Adsorption capability of Cu (II) by chitosan under those optimum conditions was subsequently evaluated by determining their adsorption isotherms and interaction mechanism. The results showed that the optimum condition for adsorption were pH 8, contact time 60 min, and mass of adsorbent 300 mg. Under those optimum conditions, chitosan has a high percentage removal of Cu (II) from aqueous solution, up to 70%. The adsorption process was well described as Langmuir isotherm and it is assumed that the interaction between Cu (II) and chitosan was based on chemical mechanism.


2007 ◽  
Vol 544-545 ◽  
pp. 597-600
Author(s):  
Choon Hee Shim ◽  
Woo Keun Lee ◽  
Hyo Jon Ban

The object of this study is to prepare adsorbents to remove heavy metals from abandoned mine residues. There are many factors that affect the adsorptivity of prepared adsorbents. The adsorptivity of prepared adsorbents is evaluated by cation exchange capatity(CEC). The maxium CEC value is obtained by Dongwon mine residues treated with NaOH. The optimum condition at that time is 75/25 wt% of mixing ratio of Dongwon mine residues and NaOH under N2 atmosphere at the activation temperature of 500°C. The CEC value was 95meq/100g at this condition. 99.5% of Pb was removed under the condition of 50 mg/L, pH 5 and reaction time of 1hr.


2017 ◽  
Vol 5 (2) ◽  
pp. 55 ◽  
Author(s):  
Dwi Arista Ningsih ◽  
Irwan Said ◽  
Purnama Ningsih

Heavy metals will cause environmental problems. One of the efforts that can minimize level of heavy metal from their solutions is to reduce heavy metals content, so that safely discarded at sea/river. One such way to reduce level of heavy metals is by adsorption. Some agricultural waste are potential as an adsorbent, namely a corncob. Therefore, the aim of this study is to determine the optimum weight of adsorben from corncob to absorb Pb(II) from its solution. In this study, the corncob was used as an adsorbent to adsorb Pb(II) by using three methods, namely powder, charcoal and activated charcoal with a solution of HCl. The parameters tested were amount of adsorbent or weight of the powder, charcoal and activated charcoal by the weight variation of 20, 40, 60, 80 and 120 mg to determine the optimum conditions in adsorbing Pb(II). The optimum conditions are obtained for the powder was 80 mg with the absorption of 96.92%, the charcoal is 80 mg with absorption of 97.29%, and the activated charcoal was 40 mg with the absorption of 94.70%.


2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Abate Ayele ◽  
Yakob Godebo Godeto

Heavy metals generated mainly through many anthropogenic processes, and some natural processes have been a great environmental challenge and continued to be the concern of many researchers and environmental scientists. This is mainly due to their highest toxicity even at a minimum concentration as they are nonbiodegradable and can persist in the aquatic and terrestrial environments for long periods. Chromium ions, especially hexavalent ions (Cr(VI)) generated through the different industrial process such as tanneries, metallurgical, petroleum, refractory, oil well drilling, electroplating, mining, textile, pulp and paper industries, are among toxic heavy metal ions, which pose toxic effects to human, plants, microorganisms, and aquatic lives. This review work is aimed at biosorption of hexavalent chromium (Cr(VI)) through microbial biomass, mainly bacteria, fungi, and microalgae, factors influencing the biosorption of chromium by microorganisms and the mechanism involved in the remediation process and the functional groups participated in the uptake of toxic Cr(VI) from contaminated environments by biosorbents. The biosorption process is relatively more advantageous over conventional remediation technique as it is rapid, economical, requires minimal preparatory steps, efficient, needs no toxic chemicals, and allows regeneration of biosorbent at the end of the process. Also, the presence of multiple functional groups in microbial cell surfaces and more active binding sites allow easy uptake and binding of a greater number of toxic heavy metal ions from polluted samples. This could be useful in creating new insights into the development and advancement of future technologies for future research on the bioremediation of toxic heavy metals at the industrial scale.


Investigation of the possibility of treating wastewater containing Cu2+ heavy metal with activated carbon material prepared from macadamia husk with activating K2CO3 in Optimal conditions such as temperature 6500C and burning time is 60 minutes. Survey results show that coal with the ability to handle heavy metals is best at 84.02% in optimal conditions such as pH=5 and time. Baking is 30 minutes. The results show similarities with other research results and are applicable to wastewater treatment Cu2+.


2021 ◽  
Vol 17 (1) ◽  
pp. 23
Author(s):  
Anggela Anggela ◽  
Widiastuti Setyaningsih ◽  
Santad Wichienchot ◽  
Eni Harmayani

Porang (Amorphophallus oncophyllus) is an indigenous tuber of Indonesia that rich in glucomannan. An alternative approach to produce porang oligo-glucomannan (POG) as prebiotic from porang glucomannan (PGM) was made by enzymatic hydrolysis using β-mannanase. This study aimed to  produce POG under optimal conditions by controlled enzymatic hydrolysis process. The PGM flour contained 96.12% of indigestible carbohydrates. The optimum condition of enzymatic hydrolysis producing the highest reducing sugar was as follows: temperature 37°C, pH 5.5, a ratio of enzyme to the substrate (E/S) 1:1000, and reaction time 4 h. HPLC analysis confirmed that 99.45% of the resulting POG consisted of oligosaccharides with a degree of polymerization (DP) 3. Hence, the PGM utilized in this study has been proven as a potential substrate for POG production. Additionally, the resulting POG was considered as a functional ingredient due to has prebiotic potential.


2012 ◽  
Vol 535-537 ◽  
pp. 1601-1604 ◽  
Author(s):  
Chang Li Ouyang ◽  
Xin Liang Liu ◽  
Fang Hu ◽  
Shuang Xi Nie ◽  
Jun Chao Liu ◽  
...  

It was detail studied that the preparation of new chelating materials derived from bagasse pith for adsorption of Cu2+ ion. The bagasse pith was modified by the ethylenediaminetetraacetic dianhydride (EDTAD) and the mechanism of sorption property for heavy metal ion was studied. The FTIR was used to characterize the esterified pith(EP). The results show that the optimal conditions are 24 h of reaction time and 1.5 g of EDTAD dosage and the maximum adsorption capacity for Cu2+ is 76.76mg/g. The peaks at 1743.62 cm−1, 1598.59 cm−1,1408.06 cm−1 in FTIR suggest carbonyl functions in the materials. The Langmuir model can describe the process of adsorbing Cu2+onto EP.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Jumat Salimon ◽  
Bashar Mudhaffar Abdullah ◽  
Nadia Salih

In this study, the effects of ethanolic KOH concentration, reaction temperature, and reaction time to free fatty acid (FFA) percentage were investigated. D-optimal design was employed to study significance of these factors and optimum condition for the technique predicted and evaluated. The optimum conditions for maximum FFA% were achieved when 1.75 M ethanolic KOH concentration was used as the catalyst, reaction temperature of65°C,and reaction time of 2.0 h. This study showed that ethanolic KOH concentration was significant variable for saponification ofJ. curcasseed oil. In an 18-point experimental design, percentage of FFA for saponification ofJ. curcasseed oil can be raised from 1.89% to 102.2%.


Sign in / Sign up

Export Citation Format

Share Document