scholarly journals Study of the influence of the aluminum source (acetate or sulfate) on the synthesis of the ceramic membrane and applications of emulsion oil water: use and reuse

2021 ◽  
Vol 10 (13) ◽  
pp. e75101321023
Author(s):  
Antonielly dos Santos Barbosa ◽  
Antusia dos Santos Barbosa ◽  
Meiry Gláucia Freire Rodrigues

The objective of this work was to prepare ceramic membranes and to evaluate the effect of the raw material on the ceramic membrane and on the efficiency of the emulsion separation oil/water. The ceramic membranes were manufactured using the uniaxial dry compaction method, from the thermal decomposition of aluminum sulfate or aluminum acetate, to evaluate the effect of the raw material (aluminum acetate or aluminum sulfate) on the efficiency in the emulsion oil/water separation. Ceramic membranes were characterized by measurements of X-ray diffraction patterns, scanning electron microscopy, mechanical strength, bubble point and water flow. In this study, membranes were produced with different characteristics. The values found for the permeate for the A1 membrane were 9.20 mg / L due to characteristics such as porosity and mechanical strength (44.63 % and 1.3 MPa), while the values A2 membrane was 6.52 mg / L, 18.86 % and 6.7 MPa. In conclusion, the membranes prepared are effective in removing the oil from the oily waste water. According to the results, the treatment of oil-water emulsions by microfiltration facilitates a significant reduction in the concentration of permeate oil.

2014 ◽  
Vol 348 ◽  
pp. 51-57 ◽  
Author(s):  
Tássia Vieira Mota ◽  
Helton Gomes Alves ◽  
Severino Rodrigues Farias Neto ◽  
Antônio Gilson Barbosa de Lima

In recent years, attention has been given to the processes controlling the emission of oily effluents and their environmental impact. Many industrial processes generate large volumes of water contaminated with oil, called oily waters. The oily water must be treated before its discard in order to meet the criteria established by environmental agencies (for example in Brazil, 20 mg/L). In present days, the process of separating oil/water with ceramic membranes has attracted the attention of many researchers [1,2]. In this sense, the aim of this study is to evaluate the influence of the tangential inlet shape in the oil/water separation via ceramic membranes. We use a mathematical multiphase flow model to describe the oil-water separation, based on the particle model. Here oil is the dispersed phase while water the continuous phase. To model the turbulence effect we use the RNGk-εmodel. All simulations were carried out using the Ansys CFX ® commercial code. Results of streamlines and velocity, pressure and volume fraction of phase fields are present and analyzed. The numerical results indicate that no significant difference when using a circular or rectangular pipe with the same cross-sectional area.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 457
Author(s):  
Chunlei Ren ◽  
Wufeng Chen ◽  
Chusheng Chen ◽  
Louis Winnubst ◽  
Lifeng Yan

Porous Al2O3 membranes were prepared through a phase-inversion tape casting/sintering method. The alumina membranes were embedded with finger-like pores perpendicular to the membrane surface. Bare alumina membranes are naturally hydrophilic and underwater oleophobic, while fluoroalkylsilane (FAS)-grafted membranes are hydrophobic and oleophilic. The coupling of FAS molecules on alumina surfaces was confirmed by Thermogravimetric Analysis and X-ray Photoelectron Spectroscopy measurements. The hydrophobic membranes exhibited desired thermal stability and were super durable when exposed to air. Both membranes can be used for gravity-driven oil/water separation, which is highly cost-effective. The as-calculated separation efficiency (R) was above 99% for the FAS-grafted alumina membrane. Due to the excellent oil/water separation performance and good chemical stability, the porous ceramic membranes display potential for practical applications.


2018 ◽  
Vol 20 ◽  
pp. 16-33 ◽  
Author(s):  
J. Saraiva de Souza ◽  
S. José dos Santos Filho ◽  
Severino Rodrigues de Farias Neto ◽  
A.G. Barbosa de Lima ◽  
H.A. Luma Fernandes Magalhães

Innovative technologies are needed to attend the increasingly strict requirements for produced water treatment, since most of the separation processes are limited to particles larger than 10 μm. Separation processes using ceramic membranes are attracting great interest from academic and industrial community. Nevertheless, few studies, especially numerical, regarding the inorganic membrane’s application for the polluted water separation have been reported. In the present work, therefore, a study of fluid-flow dynamics for a laminar regime in porous tubes (tubular porous ceramic membrane) has been performed. The mass, momentum and mass transport conservation equations were solved with the aid of a structured mesh using ANSYS CFX commercial package. The velocity of local permeation was determined using the resistance in series model. The specific resistance of the polarized layer was obtained by Carman-Kozeny equation. The numerical results were evaluated and compared with the results available in the literature, where by a good agreement with each other was found. The numerical results, obtained by the proposed shell and tubular membrane separation module, indicate that there is facilitation of mass transfer and hence a reduction in the thickness of the polarized boundary layer occurs.


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 248
Author(s):  
Saad A. Aljlil

In this study, a red clay/nano-activated carbon membrane was investigated for the removal of oil from industrial wastewater. The sintering temperature was minimized using CaF2 powder as a binder. The fabricated membrane was characterized by its mechanical properties, average pore size, and hydrophilicity. A contact angle of 67.3° and membrane spore size of 95.46 nm were obtained. The prepared membrane was tested by a cross-flow filtration process using an oil-water emulsion, and showed a promising permeate flux and oil rejection results. During the separation of oil from water, the flux increased from 191.38 to 284.99 L/m2 on increasing the applied pressure from 3 to 6 bar. In addition, high water permeability was obtained for the fabricated membrane at low operating pressure. However, the membrane flux decreased from 490.28 to 367.32 L/m2·h due to oil deposition on the membrane surface; regardless, the maximum oil rejection was 99.96% at an oil concentration of 80 NTU and a pressure of 5 bar. The fabricated membrane was negatively charged, as were the oil droplets, thereby facilitating membrane purification through backwashing. The obtained ceramic membrane functioned well as a hydrophilic membrane and showed potential for use in oil wastewater treatment.


2021 ◽  
Vol 254 ◽  
pp. 117517
Author(s):  
Qingwu Long ◽  
Jiexin Chen ◽  
Zhu Wang ◽  
Zhe Zhang ◽  
Guangxian Qi ◽  
...  

Coatings ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 943
Author(s):  
Hua Wang ◽  
Rajnesh Kumar ◽  
Hafeezullah Memon

Oil–water separation is among the critical issues worldwide due to recent massive oil spills. Moreover, domestic and industrial water pollution due to oil discharge affects marine and aquatic life. Cotton is the most predominant fiber globally because of its use as a principal and popular clothing material. Cotton is also the leading raw material for technical and functional textile applications. In this study, the fabric was cured with poly (methyl methacrylate) (PMMA) nanoparticles to develop hydrophobic and oleophilic cotton fabrics. The dehydrating agents, N,N′-dicyclohexylcarbodiimide (DCC) and dimethyl aminopyridine (DMAP), were used to catalyze the esterification. The results proved that the excellent hydrophobicity of modified cotton fabric provides a water contact angle higher than 140°. In addition, Fourier transforms infrared (FTIR) spectroscopy, as well as X-ray photoelectron spectroscopy (XPS) analysis, confirmed the fabric surface modification. Surface morphological analysis by scanning electron microscope (SEM) revealed the uniform rough surface structure of the modified fabric with nano-coating. The modified fabric resulted in the high separation efficiency of oil and water, suggesting this strategy to be suitable for advanced oil–water separation.


2019 ◽  
Vol 31 (5) ◽  
pp. 538-547 ◽  
Author(s):  
Qiong Du ◽  
Zheng Chen ◽  
Xiangyu Jiang ◽  
Jinhui Pang ◽  
Zhenhua Jiang ◽  
...  

A new nanofibrous membrane (NFM) was prepared by blending polyethersulfone (PES) and sulfonated poly(ether ether ketone) (SPEEK) via electrospinning. The membrane exhibits good thermal stability and high mechanical strength. The hydrophilicity of the membrane could be controlled by adjusting the mass ratio of PES to SPEEK. PES acts as the backbone fiber and provides high mechanical strength, while SPEEK provides hydrophilic functional groups due to the strong hydrophilicity of the sulfonic group. The test results show that the composite NFM integrates the advantages of the two polymers. Simple adjustment of the weight ratios of the two polymers can enable an adjustable flux so that the membrane can be used for different kinds of oil/water separation. The results show that NFMs can not only separate immiscible oil/water systems but also separate oil-in-water emulsions. The immiscible oil/water separation process was driven only by gravity and had a high flux of 1119.63 Lm−2 h−1. This separation process conserves energy, which is beneficial for environmental protection. The separation flux of the oil-in-water emulsion was 758.71 Lm−2 h−1 bar−1 based on measurements under different pressures, and the separation purity total organic carbon was below 50 ppm. This work indicates that a membrane comprised of PES and SPEEK has excellent performance and can be used in different fields.


Sign in / Sign up

Export Citation Format

Share Document