Mass Transfer in Tubular Ceramic Membranes for Polluted Water Treatment - Numerical Simulation

2018 ◽  
Vol 20 ◽  
pp. 16-33 ◽  
Author(s):  
J. Saraiva de Souza ◽  
S. José dos Santos Filho ◽  
Severino Rodrigues de Farias Neto ◽  
A.G. Barbosa de Lima ◽  
H.A. Luma Fernandes Magalhães

Innovative technologies are needed to attend the increasingly strict requirements for produced water treatment, since most of the separation processes are limited to particles larger than 10 μm. Separation processes using ceramic membranes are attracting great interest from academic and industrial community. Nevertheless, few studies, especially numerical, regarding the inorganic membrane’s application for the polluted water separation have been reported. In the present work, therefore, a study of fluid-flow dynamics for a laminar regime in porous tubes (tubular porous ceramic membrane) has been performed. The mass, momentum and mass transport conservation equations were solved with the aid of a structured mesh using ANSYS CFX commercial package. The velocity of local permeation was determined using the resistance in series model. The specific resistance of the polarized layer was obtained by Carman-Kozeny equation. The numerical results were evaluated and compared with the results available in the literature, where by a good agreement with each other was found. The numerical results, obtained by the proposed shell and tubular membrane separation module, indicate that there is facilitation of mass transfer and hence a reduction in the thickness of the polarized boundary layer occurs.

Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 457
Author(s):  
Chunlei Ren ◽  
Wufeng Chen ◽  
Chusheng Chen ◽  
Louis Winnubst ◽  
Lifeng Yan

Porous Al2O3 membranes were prepared through a phase-inversion tape casting/sintering method. The alumina membranes were embedded with finger-like pores perpendicular to the membrane surface. Bare alumina membranes are naturally hydrophilic and underwater oleophobic, while fluoroalkylsilane (FAS)-grafted membranes are hydrophobic and oleophilic. The coupling of FAS molecules on alumina surfaces was confirmed by Thermogravimetric Analysis and X-ray Photoelectron Spectroscopy measurements. The hydrophobic membranes exhibited desired thermal stability and were super durable when exposed to air. Both membranes can be used for gravity-driven oil/water separation, which is highly cost-effective. The as-calculated separation efficiency (R) was above 99% for the FAS-grafted alumina membrane. Due to the excellent oil/water separation performance and good chemical stability, the porous ceramic membranes display potential for practical applications.


2021 ◽  
Author(s):  
Steinar Asdahl ◽  
Johann Jansen van Rensburg ◽  
Martin Einarson Waag ◽  
Rune Glenna Nilssen

Abstract Traditionally, produced water from production separators is handled by multiple steps and different technologies in order to meet the required quality for either discharge or reinjection of the water. The development of the latest Compact Flotation Unit (CFU) technology has unlocked the potential for savings on cost, complexity, footprint and weight for the produced water treatment system. The developed CFU technology has proven applicable through field testing as a single treatment technology for reducing Oil-in-Water (OiW) content directly from tie-in at separator and still meet stringent requirements for outlet OiW quality. Field tests were conducted with inlet OiW concentration ranging from 200-2000 ppm, achieving results in the range 2.5 to 21 ppm only with a two-stage latest generation CFU. Compared to a traditional produced water system setup consisting of de-oiling hydrocyclones and a horizontal degassing vessel, the savings in footprint and operational weight is estimated to 54 % and 53 % respectively utilizing a two-stage CFU for a system with a design capacity of 76.000 BWPD. Furthermore, the development of the latest generation CFU technology has enabled the retrofit concept, incorporating the developed CFU internals into existing gravity separation based produced water vessels, converting them to more efficient flotation vessels with increased capacity. For brownfield and debottlenecking applications, operators are challenged by increasing water cut from maturing wells, and as a result exceeding the facilities design capacity for produced water treatment. This challenge is often further reinforced by increasingly stricter environmental legislation for OiW content for discharge or re-injection. The retrofit concept will offer a highly cost-, footprint- and weight-efficient solutions to these challenges utilizing existing vessels. Benefits of the retrofit concept: Bring proven and unique performance of the technology to other produced water separation vessels helping the operators improve the separation efficiency and increase throughput while meeting discharge requirementsShort execution time compared to installation of new process equipmentLow cost compared to installation of new process equipmentUtilization of existing equipment saves valuable footprint.


2017 ◽  
Vol 9 (3) ◽  
pp. 168781401668864 ◽  
Author(s):  
Hortência Luma Fernandes Magalhães ◽  
Antonio Gilson Barbosa de Lima ◽  
Severino Rodrigues de Farias Neto ◽  
Helton Gomes Alves ◽  
Josedite Saraiva de Souza

2014 ◽  
Vol 348 ◽  
pp. 51-57 ◽  
Author(s):  
Tássia Vieira Mota ◽  
Helton Gomes Alves ◽  
Severino Rodrigues Farias Neto ◽  
Antônio Gilson Barbosa de Lima

In recent years, attention has been given to the processes controlling the emission of oily effluents and their environmental impact. Many industrial processes generate large volumes of water contaminated with oil, called oily waters. The oily water must be treated before its discard in order to meet the criteria established by environmental agencies (for example in Brazil, 20 mg/L). In present days, the process of separating oil/water with ceramic membranes has attracted the attention of many researchers [1,2]. In this sense, the aim of this study is to evaluate the influence of the tangential inlet shape in the oil/water separation via ceramic membranes. We use a mathematical multiphase flow model to describe the oil-water separation, based on the particle model. Here oil is the dispersed phase while water the continuous phase. To model the turbulence effect we use the RNGk-εmodel. All simulations were carried out using the Ansys CFX ® commercial code. Results of streamlines and velocity, pressure and volume fraction of phase fields are present and analyzed. The numerical results indicate that no significant difference when using a circular or rectangular pipe with the same cross-sectional area.


2018 ◽  
Vol 35 (1) ◽  
pp. 73-108 ◽  
Author(s):  
Partha Kundu ◽  
Indra M. Mishra

Abstract Hydrocarbon-containing oily wastewater generated by various industries creates a major environmental problem all over the world since petroleum products are commonly used as energy sources and raw materials in various industries. In case of offshore/coastal oil recovery operations, produced water is discharged through either shore side outfalls or coastal rim releases. In many cases, current disposal practices leads to severe environmental pollution by contamination of petroleum hydrocarbon to the surface, ground, and coastal waterways. Therefore, it is necessary to evaluate the performance of various processes for the recovery of petroleum hydrocarbons from wastewater. In this paper, a detailed review on the different separation/treatment processes of oily wastewater is presented. Previous and recent research works are reviewed in the area of oil-water separation from wastewater and also highlight the new developments in these areas. Various separation processes and technologies such as gravity separation, flotation process, membrane process, adsorption process, biological treatment, freeze/thaw process, and photocatalytic oxidation process (PoPs)/advanced oxidation processes (AoPs) are discussed and reviewed. The adsorption properties of a wide variety of porous sorbent materials in oily wastewater treatment, particularly in the area of oil spill cleanup, are also reviewed. The advantages and disadvantages of each process are critically discussed and compared.


2018 ◽  
Vol 9 (1) ◽  
pp. 52 ◽  
Author(s):  
Zhiwen Hu ◽  
Yulong Yang ◽  
Qibing Chang ◽  
Fengli Liu ◽  
Yongqing Wang ◽  
...  

Hole defects and uneven membrane thicknesses can lead to poor performance, especially in the separation stability of ceramic membranes. This paper uses a one-step sintering method, which avoids hole defects and uneven membrane thicknesses, for the preparation of high-performance and defect-free ceramic membranes. For this purpose, two kinds of ceramic membrane slurry with high or low viscosities were prepared by alumina particles, as raw materials. Both the effects of the two coating process with a one-step coating method for low-viscosity slurry, and the two-step coating method with a high viscosity flush after a low viscosity coating, on the surface properties of a ceramic membrane, were studied in detail. The result shows that the properties of ceramic membranes can be improved by a two-step coating method, with a high viscosity flush after a low viscosity coating, A high-performance and defect-free ceramic membrane was obtained by one-step sintering at 1450 °C for 2 hr with 7 wt % solid content and a coating time of 11 s.


Sign in / Sign up

Export Citation Format

Share Document