scholarly journals Sorption of oils by a commercial non-woven polypropylene sorbent

2021 ◽  
Vol 10 (14) ◽  
pp. e554101422671
Author(s):  
Marcelo Zaro ◽  
Wendel Paulo Silvestre ◽  
Jéssica Grapilha Fedrigo ◽  
Mara Zeni ◽  
Camila Baldasso

Non-woven polypropylene (PP) sorbents are materials that can be used in oil recovery following spills, which are interesting alternatives to remediate contaminated areas. This work aimed to characterize a non-woven sorbent made of PP. The physicochemical characteristics of the material, sorption capacity, kinetics, and adsorption isotherms were evaluated. The physicochemical study included the determination of thickness, density, thermal and chemical properties of the sorbent, and fiber morphology. Sorption tests were performed according to the standard method ASTM 726-12. The kinetic models of pseudo-first and pseudo-second order were tested. The fit of the experimental data to the adsorption isotherms of Langmuir, Freundlich, and Temkin was also carried out. The sorbates used in the tests were diesel, petroleum, and lubricant oil. The sorption capacity of the PP nonwoven blanket relative to diesel, petroleum, and lubricant oil in long-term tests was 5.3, 12.3, and 18.7 g∙g-¹, with increasing values when sorbates were more viscous. The results of the short and long-term tests did not show a statistical difference in the sorption capacity of the blanket. The kinetic study showed that the sorption of the three sorbates followed pseudo-second-order kinetics. The diesel oil presented a better fit to the Langmuir isotherm (R² = 0.998), whereas the petroleum presented an excellent fit to all three isotherms (R² = 0.996-0.999). Regarding sorbent reusability, the sorption capacity stabilized after the second cycle, and the samples whose sorbate removal was carried out by centrifugation have presented and maintained the highest sorption capacities.

2019 ◽  
Vol 233 (9) ◽  
pp. 1275-1292 ◽  
Author(s):  
Atta ul Haq ◽  
Muhammad Rasul Jan ◽  
Jasmin Shah ◽  
Maria Sadia ◽  
Muhammad Saeed

Abstract The presence of heavy metals in water causes serious problems and their treatment before incorporating into the water body is a challenge for researchers. The present study was conducted to compare the sorption study of Ni (II) using silica gel, amberlite IR-120 and sawdust of mulberry wood in batch system under the influence of pH, initial Ni (II) concentration and contact time. It was observed that sorption process was depending upon pH and maximum sorption was achieved at pH 7.0. Kinetic data were well fitted into pseudo-second order kinetic model due to high R2 values and closeness of experimental sorption capacity and calculated sorption capacity of pseudo-second order. Isotherms study showed that Langmuir is one of the most suitable choices to explain sorption data due to high R2 values. The monolayer sorption capacities of silica gel, amberlite IR-120 and sawdust were found to be 33.33, 25.19, and 33.67 mg g−1, respectively. Desorption study revealed that NaCl is one of the most appropriate desorbent. It may be concluded from this study that sawdust is a suitable sorbent due to low cost, abundant availability and recycling of the materials for further study.


2011 ◽  
Vol 63 (1) ◽  
pp. 136-142 ◽  
Author(s):  
R. J. E. Martins ◽  
R. A. R. Boaventura

Aquatic bryophytes are frequently used as biomonitors for trace metals in aquatic ecosystems. Nevertheless, their special characteristics also allow using them as biosorbents to clean industrial wastewaters. As biosorption is a low cost and effective method for treating metal-bearing wastewaters, understanding the process kinetics is relevant for design purposes. In this study, the ability of the aquatic bryophyte Fontinalis antipyretica to remove lead from simulated wastewaters was evaluated. Three kinetic models (pseudo-first order, pseudo-second order and Elovich) were fitted to the experimental data and compared by the F-test. Previously, the effect on biosorption of parameters such as the initial solution pH, contact time and initial metal ion concentration was investigated. The initial pH of the solution was found to have an optimum value is in the range 4.0–6.0. The equilibrium sorption capacity of lead by Fontinalis antipyretica increased with the initial metal concentration. For an initial metal concentration of 10 mg L−1, the uptake capacity at equilibrium was 4.8 mg g−1. Nevertheless, when the initial concentration increased up to 100 mg L−1, the uptake of lead was 10 times higher. The pseudo-second order biosorption kinetic model provided the better correlation with the experimental data (R2=1.00). The applicability of the Langmuir and Freundlich adsorption isotherms to the present system was also assessed. The maximum lead sorption capacity by Fontinalis antipyretica was 68 mg g−1.


2017 ◽  
Vol 68 (1) ◽  
pp. 1-5
Author(s):  
Rodica Elena Patescu ◽  
Claudia Maria Simonescu ◽  
Cristian Onose ◽  
Teodor Laurentiu Busuioc ◽  
Daiana Elena Pasarica ◽  
...  

This research study deals with lead and nickel simultaneous removal from aqueous solutions by the use of chitosan coated cobalt ferrite as adsorbent. Batch removal tests were performed in order to establish the main parameters that influence the sorption capacity, removal efficiency and the selectivity of this adsorbent. The values of sorption capacity for lead and nickel experimentally determined are: 56.23 mg/g and respectively 45.11 mg/g. Langmuir and Freundlich adsorption isotherms were used to interpret the sorption experimental data. The kinetic data were explored by pseudo-first order, pseudo-second order and intraparticle diffusion kinetic models. The experimental data were well fitted with the pseudo-second order model for both heavy metals. The main conclusion that can be drawn from this research is that this material can be successfully used for the removal of lead and nickel from binary aqueous solutions and wastewater.


Author(s):  
P. H. Kumaraiah

Recently, low-cost adsorbents from sustainable sources are required for the remediation of textile wastewater. Carbonized Orange Peels (COPs) was utilized in remediating colour, Zinc and Copper from textile wastewater. The initial and final pH, colour and trace metals’ composition of the wastewater used were determined for the adsorption processes. Batch adsorption experiment was carried out on COPs and textile wastewater’s mixture to find effects of COP’s dosage, agitation, pH and contact time on the colour, Zinc and Copper’s removal from the wastewater. The adsorption isotherms and kinetic studies were conducted using Langmuir, Freundlich, Pseudo-first-order and Pseudo-second-order models. Findings established that the optimum removal of colour, Zinc and Copper respectively occurred at an adsorbent dosage of 2.5, 0.5 and 3.0 g/100ml, pH of 10, 4 and 2, rotating speed of 100, 250 and 250 rpm, contact time of 40, 60, and 40 mins. The adsorption isotherms revealed only copper adsorption as optimum and well fitted Langmuir isotherm. Pseudo-second-order kinetic model best suited adsorption data of the colour and metal ions with high correlation coefficient (R2) exceeding 0.95. Conclusively, COPs is effective in remediating the colour, copper and zinc from the wastewater, thus, recommended as suitable adsorbent for treatment of textile wastewater


2021 ◽  
Vol 13 (13) ◽  
pp. 7052
Author(s):  
Weisheng Lu ◽  
Ying Liu ◽  
Huike Ye ◽  
Dasong Lin ◽  
Guijie Li ◽  
...  

The adsorption and desorption characteristics of cadmium (Cd) in uncontaminated soils have been investigated in numerous studies. However, similar studies on Cd-polluted soils from different sources, which exhibit complex physicochemical characteristics and internal interactions between Cd and the soil particles, are scarce. Therefore, in order to elucidate the adsorption and desorption characteristics of Cd in Cd polluted soils, six representative Cd-contaminated paddy soil samples were collected from farmlands in the vicinity of a steel plant (Soil 1), a smelter (Soil 2), a thermal power plant (Soil 3), two mining areas (Soil 4, the Dabaoshan mine, Shaoguan; Soil 5, a lead-zinc mine located at Lechang), and a paddy field irrigated with sewage at Zhongshan (Soil 6) in Guangdong Province, China. The analysis of the six soil samples showed that Cd adsorption fitted well to pseudo-second order as well as pseudo-first order kinetics; however, the pseudo-second order equation showed a better fit (R2 = 0.860–0.962), while Elovich and intraparticle kinetic models fitted the adsorption kinetics poorly. Further, the adsorption isotherms fitted well to both the Langmuir and Freundlich models, with the Freundlich model showing a better fit (R2 = 0.96–0.98). The following order was observed for the Cd(II) adsorption amount and rate: S5 > S6 > S1 > S3 > S2 > S4; meanwhile, the desorption amount and rate followed the opposite trend. Furthermore, the pH and soil organic matter were identified as the soil characteristics with the most significant impact on the adsorption and desorption behaviors of Cd(II) in the Cd-polluted soils.


Author(s):  
Xianluo Shi ◽  
Wei Zhang ◽  
Baotong Li

Abstract Discharges from industrial and agricultural processes into water bodies can result in the accumulation of heavy metals such as Cu(II) in the sediment via various physical and chemical interactions. While there are many studies of the adsorption of heavy metals by sediment, few have considered the effects of hydrodynamic conditions. Here, the adsorption of Cu(II) by sediments under different hydrodynamic conditions was studied using a particle entrainment simulator. The sediment samples were obtained from the Poyang Lake basin in China. Models describing pseudo-first-order, pseudo-second-order, Elovich and intraparticle diffusion kinetics and the Langmuir, Freundlich, Temkin and Dubin Radushkevich adsorption isotherms were used to evaluate the adsorption of Cu(II) by the sediments under different hydrodynamic conditions. The results showed that adsorption equilibrium for Cu(II) by the sediment was attained within 4 hours and increased with increasing shear stress; the kinetics were consistent with pseudo-second-order and Elovich models, indicating that chemical processes were involved in adsorption; the adsorption isotherms could be described by the Langmuir and Freundlich models. Changes in the sediment shear stress had little effect on the maximum adsorption capacity and values ranged from 0.9425 to 1.0634 mg/g. The results indicated that the adsorption sites for Cu(II) in soil were heterogeneous.


2018 ◽  
Vol 250 ◽  
pp. 06013 ◽  
Author(s):  
Nur Atikah Abdul Salim ◽  
Noorul Hudai Abdullah ◽  
Muhammad Rijaluddin Khairuddin ◽  
Mohd A’ben Zulkarnain Rudie Arman ◽  
Mohd Hairul Khamidun ◽  
...  

Excessive amount of phosphate released from wastewater can cause eutrophication to the receiving waters. Adsorption technique has been used to remove phosphate from aqueous solutions. The use of waste mussel shell (WMS) to remove phosphate from aqueous solutions and application of several kinetic and isotherm models to describe the adsorption of phosphate onto WMS were conducted in batch experiments. The phosphate adsorption by the WMS was examined with respect to solute concentration, contact time and adsorbent dose. The phosphate removal efficiencies obtained were 46.7, 57.6, 64.1, 70.8 and 75.2% at 144 h contact time for WMS dosage of 2, 4, 6, 8 and 10 g, respectively. Physical and chemical properties of WMS including surface physical morphology and elemental compositions were characterized. A comparison of kinetic models applied to the phosphate adsorption onto WMS was evaluated for the pseudo-first order and pseudo-second order model. The experimental data fitted very well with the pseudo-second order kinetic model (R2 > 0.984), which indicated the adsorption process was chemisorption. In the isotherm studies, the Langmuir and Freundlich isotherm models were applied. The results indicated that the use of Freundlich equation is well described with the phosphate adsorptions onto WMS (R2 = 0.968), suggesting the heterogeneity of the adsorbent surface. The experimental results suggested the use of WMS as an excellent adsorption material for phosphate removal from aqueous solutions, giving new insights into environmental engineering practices.


2002 ◽  
Vol 20 (8) ◽  
pp. 797-815 ◽  
Author(s):  
Y.S. Ho ◽  
G. McKay

A comparison of the kinetics of the sorption of copper(II) on to peat from aqueous solution at various initial copper(II) concentrations and peat doses was made. The Elovich model and the pseudo-second order model both provided a high degree of correlation with the experimental data for most of the sorption process. There was a small discrepancy at the initial stages of sorption which suggested that film diffusion or wetting of the peat may be involved in the early part of the sorption process. Models evaluated included the fractional power equation, the Elovich equation, the pseudo-first order equation and the pseudo-second order equation. The kinetics of sorption were followed based on the sorption capacity of copper(II) on peat at various time intervals. Results show that chemical sorption processes may be rate-limiting in the sorption of copper(II) on to peat during agitated batch contact time experiments. The rate constant, the equilibrium sorption capacity and the initial sorption rate were calculated. From these parameters, an empirical model for predicting the concentrations of metal ions sorbed was derived.


2017 ◽  
Vol 139 (4) ◽  
Author(s):  
Ali Barati-Harooni ◽  
Adel Najafi-Marghmaleki ◽  
Seyed Moein Hosseini ◽  
Siyamak Moradi

Surfactants have the potential to reduce the interfacial tension between oil and water and mobilize the residual oil. An important process which makes the surfactant injection to be less effective is loss of surfactant to porous medium during surfactant flooding. This study highlights the results of a laboratory study on dynamic adsorption and desorption of Trigoonella foenum-graceum (TFG) as a new nonionic surfactant. The experiments were carried out at confining pressure of 3000 psi and temperature of 50 °C. Surfactant solutions were continuously injected into the core plug at an injection rate of 0.5 mL/min until the effluent concentration was the same as initial surfactant concentration. The surfactant injection was followed by distilled water injection until the effluent surfactant concentration was reduced to zero. The effluent concentrations of surfactant were measured by conductivity technique. Results showed that the adsorption of surfactant is characterized by a short period of rapid adsorption, followed by a long period of slower adsorption, and also, desorption process is characterized by a short, rapid desorption period followed by a longer, slow desorption period. The experimental adsorption and desorption data were modeled by four well-known models (pseudo-first-order, pseudo-second-order, intraparticle diffusion, and Elovich models). The correlation coefficient of models revealed that the pseudo-second-order model predicted the experimental data with an acceptable accuracy.


2019 ◽  
Vol 7 (2A) ◽  
Author(s):  
VALERIA CUCCIA ◽  
SANDRO ROGÉRIO NOVAES SELES ◽  
ANA CLAUDIA QUEIROZ LADEIRA

Radionuclides may contaminate lubricant oils in nuclear power plants. In Brazil, this kind of waste has been stored in the generator’s facilities, awaiting treatment alternatives. This work intends to investigate a process to treat it for final deposition, using bentonite as sorbent material. This process will result in decontaminated oil, free from radiological control, and radioactive loaded sorbent, with considerable volume reduction of the radioactive waste. The study focuses in cobalt removal from a simulated oil waste (non-active). The production of the simulated waste is described. Bentonite was used for equilibrium time determination, kinetic and adsorption studies. Cobalt adsorption equilibrium was rapidly attained after 30 minutes. The data was used for modelling the system’s kinetic, applying the pseudo first and pseudo second order equation models. Experimental data fitted to pseudo second order model, supporting the assumption that the adsorption is due to chemisorption. Batch sorption tests were conducted and the results fitted to Langmuir and Freundlich sorption models. Both isotherm models chosen for this work did not fit to the experimental data. Thus, these are preliminary results and the studies must be repeated to evaluate data variability and better statistical inference. Other isotherm models must be evaluated to choose the best fitted one and describe the sorption of cobalt on bentonite in oil matrix. Even though, bentonite has considerable potential as sorbent for the removal of cobalt from lubricant oil. Finally, the results might be extended to other kinds of radioactive oils and radioactive organic wastes.


Sign in / Sign up

Export Citation Format

Share Document