scholarly journals Corrosion characterization of the experimental alloy Ti-35Nb-7Zr-5Ta by electrochemical techniques

2021 ◽  
Vol 10 (6) ◽  
pp. e40610615861
Author(s):  
Ana Elisa Vilicev Italiano ◽  
Daniela Vieira Amantéa ◽  
Fernando Santos da Silva ◽  
Leandro Fernandes ◽  
Márcio Luiz dos Santos ◽  
...  

The objective of the present study was to evaluate the corrosion resistance of the experimental alloy Ti-35Nb-7Zr-5Ta, modified by laser beam, in a physiological solution of 0.9% NaCl. This evaluation was carried out by open circuit potential analysis (EOCP), potentiodynamic polarization curves and cyclic polarization curves. The open circuit potential curves show the specimen irradiated by laser beam at 35 Hz presented a more stable and corrosion resistant surface. It was observed in the polarization curves, low current densities in the order of nA /cm2, for all specimen indicating an expected passive behavior for the investigated alloy. The cyclic polarization curves show that for specimen treated with laser, the potential for repassivation (Er) is greater in relation to the potential for corrosion (Ecorr), which indicates greater resistance to corrosion of metal alloys when treated with laser.

2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
J. Porcayo-Calderon ◽  
M. Casales-Diaz ◽  
V. M. Salinas-Bravo ◽  
L. Martinez-Gomez

Several austenitic stainless steels suitable for high temperature applications because of their high corrosion resistance and excellent mechanical properties were investigated as biomaterials for dental use. The steels were evaluated by electrochemical techniques such as potentiodynamic polarization curves, cyclic polarization curves, measurements of open circuit potential, and linear polarization resistance. The performance of steels was evaluated in two types of environments: artificial saliva and mouthwash solution at 37°C for 48 hours. In order to compare the behavior of steels, titanium a material commonly used in dental applications was also tested in the same conditions. Results show that tested steels have characteristics that may make them attractive as biomaterials for dental applications. Contents of Cr, Ni, and other minor alloying elements (Mo, Ti, and Nb) determine the performance of stainless steels. In artificial saliva steels show a corrosion rate of the same order of magnitude as titanium and in mouthwash have greater corrosion resistance than titanium.


2007 ◽  
Vol 546-549 ◽  
pp. 571-574
Author(s):  
Xing Wu Guo ◽  
Jian Wei Chang ◽  
Shang Ming He ◽  
Peng Huai Fu ◽  
Wen Jiang Ding

The corrosion behavior of GW63 (Mg-6wt.%Gd-3wt.%Y-0.4wt.%Zr) alloys in 5% NaCl aqueous solution has been investigated by PARSTAT 2273 instrument. The Open Circuit Potential (ECORR) vs. time curve, cyclic polarization (Pitting Scans) curve and Electrochemical Impedance Spectroscopy (EIS) was measured for the GW63 alloys in as-cast and T6 heat treatment conditions. The EIS results indicated that the tendency of impedance variation for as-cast condition was monotonic decreasing, however, the tendency of variation for T6 condition was not completely monotonic but the total tendency was decreasing. The values of impedance of GW63 alloy at 0.1 Hz are about 103 ohm-cm2 for as-cast and T6 condition.


CORROSION ◽  
10.5006/0709 ◽  
2013 ◽  
Vol 69 (6) ◽  
pp. 543-550 ◽  
Author(s):  
S. Jones ◽  
K. Coley ◽  
J. Kish

When exposed to concentrated sulfuric acid, stainless steel exhibits unique electrochemical behavior. This behavior can be observed as an oscillation in open-circuit potential between the active and passive states. The transient nature of the corrosion behavior under these conditions results in a distinct challenge for measuring and predicting corrosion rates. Using a series of commercial alloys with various nickel contents, this paper outlines the utilization of electrochemical experimentation to refine the prediction of corrosion rates. The paper also discusses some of the difficulties associated with many traditional electrochemical techniques such as potentiodynamic scans when used for characterizing systems that undergo oscillations in open-circuit potential.


2014 ◽  
Vol 805 ◽  
pp. 167-171 ◽  
Author(s):  
F.S. Silva ◽  
P.H. Suegama ◽  
W.P. Silva ◽  
A.W. Rinaldi ◽  
N.L.C. Domingues ◽  
...  

Schiff bases m-toluene N-Salicylideneaniline (m-TOL), (B) m-nitro-N- Salicylideneaniline (m-NTR) and (C) m-methoxy-N-salicylideneaniline (m-MTX) and cerium ions were studied added to 3.5 wt.% NaCl solution and added to the hybrid film based tetraethoxysilane (TEOS) e 3-methacryloxypropyltrimethoxysilane (MPTS). The polarization measurements showed lower current densities for the steel in NaCl with m-MTX, indicating that the m-MTX may be acting as an inhibitor. The hybrid films were doped with the m-MTX, Ce (III) or Ce (IV). Electrochemical measurements of open circuit potential (EOC), polarization curves and electrochemical impedance spectroscopy (EIS), were used to evaluate the corrosion behavior of the hybrid films. According Electrochemical Impedance measurements, all hybrid films, provided protection to the carbon steel. The films doped with Ce (IV), provided greater protection than the other, which indicates that this is the most suitable dopant for use in films.


2012 ◽  
Vol 581-582 ◽  
pp. 1058-1061
Author(s):  
Jia Qun Rui ◽  
Jun Li ◽  
Hu Dai Sun ◽  
Kun Yu Zhao ◽  
Zhi Dong Li ◽  
...  

This objective is to study the influence of pH on the electrochemical behavior of 00Cr15Ni7Mo2Cu2 supermartensitic stainless steel in 3.5% NaCl solutions using potentiondynamic polarization technique, open circuit potential tests and electrochemical impedance spectroscopy (EIS).The study reveals that the pitting potential (Eb) is higher, the passivation current densities (ip) is lower and the electrochemical impedance increases with the pH. The results indicate that this stainless steel offer good pitting corrosion resistance with the pH increasing in 3.5% NaCl solutions.


2013 ◽  
Vol 805-806 ◽  
pp. 1240-1249
Author(s):  
Hong Xia Liang ◽  
Fu Rong Li ◽  
Zhi Lin Wang

The electrochemical behavior of zinc electrode with bismuth addition in 35%KOH solutions has been investigated systematically by electrochemical methods including linear polarization, potentiostatic polarization, potential-time measurements at a constant current density, combining the observations of scanning electron microscopy (SEM). Linear polarization results showed that the open circuit potential shifted positively with increasing bismuth content, which is explained based on the gassing data and change in the exchange current of the zinc electrode. Addition of bismuth increased the exchange current of zinc reaction and caused an increase in the measured open circuit potential. Galvanostatic results showed that the addition of bismuth shortened the passivation time. Scanning electron microscopy images showed that the addition of bismuth aggravated the corrosion of zinc electrode which may be responsible for the increased tendency to passivation at high current densities. It has been found that at low current densities the reaction kinetics may be increased by addition of Bi, which is general agreement with the discharging test of actual alkaline batteries.


Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1494
Author(s):  
Vesna S. Cvetković ◽  
Dominic Feldhaus ◽  
Nataša M. Vukićević ◽  
Tanja S. Barudžija ◽  
Bernd Friedrich ◽  
...  

Electrodeposition processes of neodymium and praseodymium in molten NdF3 + PrF3 + LiF + 1 wt.%Pr6O11 + 1 wt.%Nd2O3 and NdF3 + PrF3 + LiF + 2 wt.%Pr6O11 + 2 wt.%Nd2O3 electrolytes at 1323 K were investigated. Cyclic voltammetry, square wave voltammetry, and open circuit potentiometry were applied to study the electrochemical reduction of Nd(III) and Pr(III) ions on Mo and W cathodes. It was established that a critical condition for Nd and Pr co-deposition in oxyfluoride electrolytes was a constant praseodymium deposition overpotential of ≈−0.100 V, which was shown to result in co-deposition current densities approaching 6 mAcm−2. Analysis of the results obtained by applied electrochemical techniques showed that praseodymium deposition proceeds as a one-step process involving exchange of three electrons (Pr(III)→Pr(0)) and that neodymium deposition is a two-step process: the first involves one electron exchange (Nd(III)→Nd(II)), and the second involves an exchange of two electrons (Nd(II)→Nd(0)). X-ray diffraction analyses confirmed the formation of metallic Nd and Pr on the working substrate. Keeping the anodic potential to the glassy carbon working anode low results in very low levels of carbon oxides, fluorine and fluorocarbon gas emissions, which should qualify the studied system as an environmentally friendly option for rare earth metal deposition. The newly reported data for Nd and Pr metals co-deposition provide valuable information for the recycling of neodymium-iron-boron magnets.


2016 ◽  
Vol 11 (2) ◽  
pp. 3441-3451 ◽  
Author(s):  
A. M. El-Shamy ◽  
M. F. Shehata ◽  
Samir T. Gaballah ◽  
Eman A. Elhefny

Laboratory synthesized ethyl (4-(N-(thiazol-2-yl)sulfamoyl)phenyl)carbamate (TSPC), characterized by 1H NMR spectroscopy, was evaluated as corrosion inhibitor of mild steel in 0.1M HCl using electrochemical techniques. Open circuit potential, potentiodynamic polarization and impedance spectroscopy were used to evaluate the inhibition efficiency of (TSPC) at various concentrations. The obtained electrochemical data indicated that (TSPC) acts as moderate corrosion inhibitor for mild steel in acidic media. It is found that the inhibition efficiency increases with the concentration of the inhibitor till 400ppm. The adsorption isotherm involving physisorption of (TSPC) at room temperature and the experimental data complied to the Langmuir adsorption isotherms and the negative values of the Gibb’s free energy of adsorption obtained suggested that inhibitor molecules have been spontaneously adsorbed onto the mild steel surface.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
D. M. Martinez de la Escalera ◽  
J. J. Ramos-Hernandez ◽  
E. Porcayo-Palafox ◽  
J. Porcayo-Calderon ◽  
J. G. Gonzalez-Rodriguez ◽  
...  

In this study, the effect of the addition of Nd3+ ions as a corrosion inhibitor of the API X70 steel in a medium rich in chlorides was evaluated. The performance of the Nd3+ ions was evaluated by means of electrochemical techniques such as potentiodynamic polarization curves, open circuit potential measurements, linear polarization resistance, and electrochemical impedance spectroscopy, as well as by means of scanning electron microscopy and EDS measurements. The results showed that Nd3+ ions reduce the corrosion rate of steel at concentrations as low as 0.001 M Nd3+. At higher concentrations, the inhibition efficiency was only slightly affected although the concentration of chloride ions was increased by the addition of the inhibitor. The adsorption of the Nd3+ ions promotes the formation of a protective layer of oxides/hydroxides on the metal surface, thereby reducing the exchange rate of electrons. Nd3+ ions act as a mixed inhibitor with a strong predominant cathodic effect.


Sign in / Sign up

Export Citation Format

Share Document