scholarly journals Aspergillus spp. isolates from bovine rumen can increase the digestibility and degradability of forages

2021 ◽  
Vol 10 (8) ◽  
pp. e56410817340
Author(s):  
Flávia Oliveira Abrão ◽  
Eduardo Robson Duarte ◽  
Moisés Sena Pessoa ◽  
Otaviano de Souza Pires Neto ◽  
Anna Carolynne Alvim Duque ◽  
...  

The bovine production on pastures is a sustainable activity, responsible to generating income and employments in many tropical regions. However, in this system a major obstacle occurs during long dry periods, when the forages show low nutritional quality. In this research we evaluated the in vitro digestibility and degradability of Urochloa decumbens and Cynodon dactylons var Tiffton 85 inoculated with isolates of Aspergillus spp. from the gastrointestinal tract cattle. Four cows with rumen fistula were used as rumen contents donors to determine the in vitro digestibility of dry matter (IVDMD). The treatments were, as follows: control - No fungal inoculum, AT13 – (with Aspergillus terreus isolate), AF69 – (with Asperillus fumigates isolate, MIX (with mix of fungi AT13 and AF69). The analyses were performed in rumen simulator with four replications. The gas production was determined by semi-automatic method for both gas and the mechanics ability to fiber colonization of these fungi isolates were evaluated by scanning electron microscopy. The inclusion of AF69 and MIX promoted significant increase of IVDMD of U. decumbens (41.4 - 42.1%). The dry matter degradability were not influenced by the inoculums types using the by semi-automatic gas production method However, they linearly increased with fermentation time.  The two isolates of Aspergillus spp. were able to colonize the U. decumbens fiber showing production of mycelium and reproductive structures in electronic microscopic analyses. The addition these Aspergillus isolates promotes significant increase of IVDMD to U. decumbens, indicating promising potential for development of microbial or probiotic additive to cattle raised on lignified tropical pasture.

2020 ◽  
Vol 44 (3) ◽  
Author(s):  
Cuk Tri Noviandi ◽  
Dibya Ratnopama ◽  
Ali Agus ◽  
Ristianto Utomo

This study was done to determine the effects of bale sizes of bio-ammoniated rice straw on its nutrient quality and in vitro digestibility. Rice straw were bio-ammoniated by adding 2 g urea and 1 g probiotic/kg DM. By following a completely randomized design, rice straw was baled in 3 different weights (15, 25, and 35 kg) with six replications for each treatment, and then stored for 3 weeks. In the end of the week 3, bales were opened, aired, and then sampled for proximate analysis (dry matter, organic matter, crude protein, and crude fiber) and digestibility by in vitro gas production method. Using analysis of variance method, the proximate data showed that greater the bales size (15, 25, and 35 kg) increased crude protein (7.59, 7.86, and 9.95%, respectively; P<0.05) and decreased crude fiber contents (24.1, 22.1, and 18.8%, respectively; P<0.05). By increasing the size of bales also increased a, b, and c fractions (-0.79, 0.26, and 0.82 mL/100 mg DM; 20.2, 18.2, and 17.6 mL/100 mg DM; 0.012, 0.014, and 0.019 mL/h, respectively; P<0.05) as well as gas production (11.4, 11.5, and 13.8 mL/100 mg DM, respectively; P<0.05). It can be concluded that packing bio-ammoniated rice straw in 35 kg bale is the most effective way in increasing nutrient quality and digestibility of rice straw.


2017 ◽  
Vol 18 (1) ◽  
pp. 50-61 ◽  
Author(s):  
Silvonei Tiago RICACHESKI ◽  
Douglas Sampaio HENRIQUE ◽  
Lilian Regina Rothe MAYER ◽  
Jhone Gleison de OLIVEIRA ◽  
Jucemara Aparecida ROSLER ◽  
...  

SUMMARY The present study aiming to determine the nutritional quality of oat (Avena sativa L.) IPR 126 in order to produce forage for ruminants. Four periods between harvests were used: 14, 21, 28 and 35 days, distributed in randomized blocks with four replicates for each treatment. The variables evaluated were: the concentration of dry matter (DM), neutral detergent insoluble fiber (NDF), crude potein (CP), lignin, dry matter (DM), ash, ether extract (EE) and in vitro digestibility of dry matter obtained by measurement of gas production. The profile of gas production was adjusted to the logistic bicompartimental mathematical model. The variables and the parameters of the adjusted gas production curves were analyzed as repeated measurements through the PROC MIXED of SAS (version 9.0) and the restricted maximum likelihood (REML) as the method of estimation of parameters. Regression analysis was performed for the variables: DM, CP, EE, NDF, ash, and for the parameter k2 of the bicompartimental model. DM and NDF concentrations increased linearly, CP, ash, and the estimations of the parameter k2 reduced linearly and the EE concentration showed a cubic behavior in function of the age of harvest. Lignin and other parameters of the Schofield model were not influenced by the age of harvest. The harvest interval influenced some chemical components and degradation rate of fiber carbohydrates, but do not interfere in lignin concentration. The forage with 21 days of cutting interval has the high nutritional value.


2020 ◽  
Vol 6 (3) ◽  
pp. 109 ◽  
Author(s):  
Chanon Suntara ◽  
Anusorn Cherdthong ◽  
Suthipong Uriyapongson ◽  
Metha Wanapat ◽  
Pin Chanjula

The objective of this study was to compare the effects of Crabtree-negative ruminal yeast and Crabtree-positive yeast in ensiled rice straw (RS) on the ensilage quality, nutritive value, and microorganism composition, including the evaluation of the ensiled RS using the in vitro gas production technique. The experiment was conducted in a 4 × 3 factorial arrangement in a randomized complete design. Factor A was yeast species with no inoculant, Crabtree-negative yeasts (Pichia kudriavzevii KKU20 and Candida tropicalis KKU20), and Crabtree-positive yeast (Saccharomyces cerevisae), whereas factor B was ensilage times (7, 14, and 21 days). The rate of growth was revealed to be lower in Crabtree-positive yeasts than the other Crabtree-negative yeast strains (p < 0.01). RS ensiled with S. cerevisiae showed decreased dry matter (DM) content by 9.0% when compared to the sample without a yeast inoculant. In addition, organic matter (OM) content was greater (p < 0.01) for P. kudriavzevii KKU20 than C. tropicalis KKU20 and without an inoculant. Neutral detergent fiber (NDF) content was significantly decreased (p < 0.01) by yeast inoculants by about 2.75% when compared to the control group. Lactic acid bacteria (LAB) and aerobic bacteria were low (p < 0.05) when yeasts were added. However, no interaction was found between yeast and ensilage times on the quality of ensiled RS (p > 0.05). The P. kudriavzevii KKU20 addition was associated with the highest value (p < 0.01) of gas produced—an insoluble fraction (b), potential extent of gas production (a + b), and cumulative gas production at 96 h—when compared with S. cerevisiae or the control group. The highest in vitro dry matter digestibility and in vitro neutral detergent fiber digestibility was observed in RS ensiled with P. kudriavzevii KKU20 for 14 days (p < 0.01, p < 0.05). The maximum total volatile fatty acids (VFAs) at 4 and 8 h of incubation and the mean value were observed in RS ensiled with P. kudriavzevii KKU20 (p < 0.01). RS ensiled with all yeast strains showed an increased propionate concentration at 8 h (p < 0.01). In conclusion, ensiling RS with isolated Crabtree-negative ruminal yeasts could benefit feed digestion and in vitro gas production more than Crabtree-positive yeast does. P. kudriavzevii KKU20, an isolated Crabtree-negative ruminal yeast used to treat RS, had the highest potential for increasing cumulative gas production and enhancing in vitro digestibility.


Author(s):  
M.T. Dentinho ◽  
K. Khazaal ◽  
J.M. Ribeiro ◽  
E.R. Ørskov

By using separated values of kinetics of in situ dry matter (DM) degradation or in vitro gas production (Menke and Steingass, 1988) of leguminosae hays, Khazaal et al, (1993) reported high correlation with intake (r= 0.88; r= 0.79) and in vivo DM digestibility (DMD) (r= 0.94; r= 0.88). The aim of the present study was to extend the range of samples used and compare the ability of the 2 stages in vitro digestibility (Tilley and Terry, 1963), the in situ DM degradation or the gas production techniques to predict daily intake (g DM/ kgW0.75) and in vivo DM digestibility (DMD) of 19 leguminous and graminaceous hays fed to sheep.Three harvesting stages (early bloom EB, mid bloom MB or in seed IS) made from lucerne (Medicago sativa), sweet clover (Melilotus segetalis), Persian clover (Trifolium resupinatum), Rye (Secale cereale), Triticale (Triticale hexaploid), oat (Avena stativa) and a pre-bloom (PB) Italian ryegrass (Lolium multiflorum ). Each hay was fed ad libitum to 4 Merino male sheep and their intake and in vivo DMD recorded. Gas production (ml/ 200 mg DM) or in situ DM degradation (g/ 100 g DM) were determined as described by Khazaal et al, (1993) after 6, 12, 24, 48, 72 or 96 h incubation. Measured gas production or DM degradation values were fitted to the equation p=a+b(l-e-ct)(McDonald, 1981) where p is gas production or DM degradation at time t and a, b and c are constants. For nylon bag the washing loss (soluble fraction) was defined as A, the insoluble but fermentable matter was defined as B=(a+b)-A, and c is the rate of fermentation or degradation (Ørskov and Ryle, 1990).


2017 ◽  
Vol 39 (3) ◽  
pp. 289 ◽  
Author(s):  
Paula Martins Olivo ◽  
Geraldo Tadeu dos Santos ◽  
Luís Carlos Vinhas Ítavo ◽  
Ranulfo Combuca da Silva Junior ◽  
Eduardo Souza Leal ◽  
...  

Agroindustrial co-products are a viable alternative for use in animal nutrition. Tests were conducted using eight different types of co-products and feed to evaluate the chemical composition, in vitro digestibility of dry matter, crude protein and neutral detergent fiber, and gas production by them. The co-products tested were: coffee hulls; pelleted citrus pulp; grape residue; soybean hulls; cottonseed; cassava foliage; and foods usually supplied to ruminants: corn silage and ground corn concentrate. Data of in vitro digestibility of dry matter, crude protein and neutral detergent fiber were tested by analysis of variance using the least square method; the results of gas production were interpreted by a non-linear regression by the Gauss-Newton method; and the effects of treatments were evaluated by the Tukey’s test. The coefficients of in vitro digestibility of dry matter, crude protein and neutral detergent fiber of co-products were different. Gas production was also different between co-products and feeds evaluated for the volume of gas produced from the fast and slow degradation fractions, degradation rate, bacterial colonization time, and the total volume of gas produced. The evaluated co-products exhibited greater in vitro dry matter digestibility compared to corn silage, except for cottonseed, grape residue, and cassava foliage. Co-products showed higher values of in vitro crude protein digestibility compared to corn silage, and a reduced in vitro digestibility of neutral detergent fiber, except for pelleted citrus pulp and soybean hulls. Corn silage produced larger volume of gas from the fast degradation fraction compared to the co-products and corn concentrate. Co-products analyzed had appropriate nutritional characteristics according to the techniques applied and can be included in ruminant diets. 


2016 ◽  
Vol 56 (10) ◽  
pp. 1700
Author(s):  
J. M. Cantet ◽  
D. Colombatto ◽  
G. Jaurena

The objective was to assess the impact of application of two enzyme mixtures on the in vitro dry matter digestibility, neutral detergent fibre digestibility, net cumulative gas production and methane production after 24 h of incubation of Milium coloratum (formely Panicum coloratum) and a Patagonian meadow grassland. A protease (Protex 6-L) and a fibrolytic enzyme (Rovabio) were assessed at three application rates (30, 60 and 90 mg/100 mL of distiller water) on the substrates. Meadow samples were higher to Milium ones (P < 0.05) for in vitro dry matter digestibility and net cumulative gas production at 24 h. Nevertheless, Milium was ~11% higher than meadow (P < 0.05) for methane when expressed as a proportion of digested dry matter (g/kg). Rovabio did not induce differences in any variable, but the addition of Protex reduced (P < 0.05) in vitro dry matter digestibility in both substrates without bringing about differences in methane production. Collectively, the addition of these enzymes did not benefit in vitro ruminal fermentation of low quality forages.


1998 ◽  
Vol 22 ◽  
pp. 249-251
Author(s):  
M. S. Dhanoa ◽  
J. C. Tanner ◽  
E. Owen ◽  
M. K. Theodorou ◽  
H. M. Winugroho

In addition to assessing rate and extent of gas production from fermenting forages in vitro with rumen micro-organisms, gas production methods (e.g. Theodorou et at, 1994) may be used also to study the degradation kinetics of forage dry matter and its fractions. As the substrate dry matter can be lost only through fermentation or solution, this removes the error inherent in the polyester bag method caused by fine particle losses from bags being deemed part of the ‘soluble’ fraction.The pressure transducer technique (PTT) of Theodorou et al. (1994) was used to measure gas production from nine tropical forage samples (Table 1). Nine bottles were prepared from each of the forage samples. Two bottles of each forage were harvested after 8, 24 and 48 h of incubation and a further three bottles at 72 h, to determine dry matter (DM) and organic matter (OM) losses. The same nine forages were assessed using the polyester bag method (Mehrez and Ørskov, 1977) to obtain DM and OM disappearance after rumen incubations of 4, 8, 24, 48 and 72 h. The soluble fraction was determined by hand washing. The reproducibility of measured losses, at given times, was examined using concordance (rc) correlation (Lin, 1989) and mean square prediction error (MSPE, Bibby and Toutenberg, 1977). Also the simple exponential model was used to estimate the fractional rate of DM degradation (kd) and asymptote A (%) for each forage and the values obtained using PTT (kd,ptt) and in situ (kd,bag) compared using rc and MSPE.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 430-431
Author(s):  
Annelise G Lobo ◽  
Rafaela Vincenzi ◽  
Richard R Lobo ◽  
Vanderlei Benetel Junior ◽  
Leticia L Panosso ◽  
...  

Abstract The use of filter crucibles to determine the degradability increases the time required in the analytical process, thus reducing the speed of obtaining experimental data. This has made it necessary to search for alternative methods that ensure a homogeneous digestion and filtration system for all samples and provide accurate and accurate results. The study evaluated the in vitro dry matter degradability of five treatments: 1) Filter crucible; 2) F57 bags (Ankom®) with non-degradable mass; 3) TNT bags weighing g/m2 with non-degradable mass; 4) F57 bags (Ankom®); 5) TNT bags weighing g/m2. The in vitro gas production method used was the semiautomatic one with pressure transducer, for that 8 bovines Nellore castrated male were used as content and ruminal liquid donors. A completely randomized experimental design was used, with 5 treatments, 4 blocks (inocula), and three replicates within each block. PROC GLM was used to adjust for multiple comparisons of the data using the Tukey’s test at 5% significance. There was no difference in the in vitro dry matter degradability for 24 or 96 hours (P-value 0.0554 and 0.1411, respectively), regardless of the treatment. Thus, the possibility of using TNT made bag to the detriment of the F57 bag is affirmed because of the high cost of this one in relation to that one.


2021 ◽  
Vol 43 ◽  
pp. e52129
Author(s):  
Tahereh Mohammadabadi ◽  
Morteza Chaji ◽  
Ehsan Direkvandi ◽  
Othman Alqaisi

. This study was performed to investigate the effect of replacing alfalfa hay by L. leucocephala leaves in proportions of 25, 50 and 100% on in vitro gas production (GP) parameter, digestibility and in situ degradability in buffalo. Results showed that the volume of GP at 2 to 12 hours after incubation was significantly affected by replacing alfalfa hay with L. leucocephala leaves. In vitro digestibility of organic matter (OMD) differed significantly between treatment as it declined by increasing the alfalfa hay substitution rate from 25 to 100%. The microbial crude protein (MCP) differed significantly between treatments and was the greatest of 589 and 599 mg g-1 of dry matter (DM) when L. leucocephala leaves replaced alfalfa hay at 25 and 50%. The in vitro digestibility of DM (IVDMD) increased significantly at 50% L. leucocephala replacement rate. Moreover, substituting alfalfa hay by L. leucocephala had a significant effect on the in situ degradability parameters. The insoluble but potentially degradable fraction (B) and potential of degradability (A+B) significantly increased for treatment contain 50% L. leucocephala leaves. The effective degradability (ED) was significantly different between dietary treatments and was the greatest when alfalfa hay was replaced by 25 and 50% L. leucocephala. In conclusion, L. leucocephala leaves can substitute 25 to 50% of dietary alfalfa hay in buffalo rations without effect on rumen efficiency.


Sign in / Sign up

Export Citation Format

Share Document