scholarly journals Encapsulation of candlenut oil by freeze-drying method

2020 ◽  
Vol 2 (1) ◽  
pp. 53-61
Author(s):  
Silvya Yusri ◽  
Celine Meidiana ◽  
Abdullah Muzi Marpaung ◽  
Hery Sutanto

Candlenut oil is a potential source of omega fatty acids that can be used as a food supplement or nutrient for food fortification. It contains high amount of omega fatty acids and also available in high quantity, especially in Indonesia. However, due to its off-odor and its thermalsensitivity which makes candlenut oil prone to oxidation, the application into food products still needs more improvement. Encapsulation is one of the techniques that is used to protect the candlenut oil from oxidation. This research aimed to find the best encapsulating agent to protect the omega content from candlenut oil against oxidation through freeze-drying method. Factors such as encapsulating agent (whey protein isolate, sodium caseinate, β-cyclodextrin, gum Arabic) and ratios of encapsulating agent to oil (3:2, 1:1 and 2:3) were investigated to find out the most appropriate microcapsule and conditions to ensure there will be no change of the candlenut oil characteristics. Moisture content, microencapsulation efficiency (ME), and peroxide value (PV) were analyzed as the product parameter. The highest encapsulation efficiency was obtained by using sodium caseinate (43.22 ± 0.9 %) with the ratio of encapsulating agent-oil was 3:2. The second stage of candlenut oil encapsulation was carried out to improve the efficiency of microcapsule, and the result showed that the efficiency of encapsulated oil with sodium caseinate as encapsulating agent was increased to 64.86%.

2014 ◽  
Vol 5 (11) ◽  
pp. 2743-2750 ◽  
Author(s):  
Divya Eratte ◽  
Bo Wang ◽  
Kim Dowling ◽  
Colin. J. Barrow ◽  
Benu P. Adhikari

Tuna oil rich in omega-3 fatty acids was microencapsulated in whey protein isolate (WPI)–gum arabic (GA) complex coacervates, and subsequently dried using spray and freeze drying to produce solid microcapsules.


Author(s):  
F. Maruddin ◽  
R. Malaka ◽  
S. Sabil ◽  
S. Baba ◽  
H. Amqam ◽  
...  

Background: Sodium caseinate is a rich source of protein and minerals originating from animals. Numerous food and non-food products are made from sodium caseinate. The present study investigated the chemical components (moisture, crude protein, ash, and soluble crude protein) of sodium caseinate prepared by different acids and drying techniques. Methods: A completely randomized factorial design was used by different acids including hydrochloric acid (HCl) and acetic acid, and also drying methods including oven (50 °C for 48 h) and freeze drying (-40 °C for 48 h). In each experimental group, sodium caseinate was obtained for determination of moisture, crude protein, ash, and soluble crude protein. Data were statistically evaluated using an ANOVA in SPSS 18.0. Results: The interaction of both acids and drying methods significantly (p<0.01) affected moisture, crud protein, and ash content. HCl treatment coupled with freeze drying was the best combination, resulting in an appreciably higher content of crude protein (52.90%), moisture (5.38%), and soluble protein (0.85%). Conclusion: The kinds of acid and drying method altered the chemically profile of sodium caseinate. The combination of HCl and freeze drying could be the considered as the best approach, resulting in good chemical characteristics of sodium caseinate.


2015 ◽  
Vol 19 ◽  
pp. 882-892 ◽  
Author(s):  
Divya Eratte ◽  
Stafford McKnight ◽  
Thomas R. Gengenbach ◽  
Kim Dowling ◽  
Colin J. Barrow ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2237 ◽  
Author(s):  
Lauryna Pudziuvelyte ◽  
Mindaugas Marksa ◽  
Katarzyna Sosnowska ◽  
Katarzyna Winnicka ◽  
Ramune Morkuniene ◽  
...  

The present study reports on the encapsulation of Elsholtzia ciliata ethanolic extract by freeze-drying method using skim milk, sodium caseinate, gum Arabic, maltodextrin, beta-maltodextrin, and resistant-maltodextrin alone or in mixtures of two or four encapsulants. The encapsulation ability of the final mixtures was evaluated based on their microencapsulating efficiency (EE) of total phenolic compounds (TPC) and the physicochemical properties of freeze-dried powders. Results showed that the freeze-dried powders produced using two encapsulants have a lower moisture content, but higher solubility, Carr index, and Hausner ratio than freeze-dried powders produced using only one encapsulant in the formulation. The microencapsulating efficiency of TPC also varied depending on encapsulants used. The lowest EE% of TPC was determined with maltodextrin (21.17%), and the highest with sodium caseinate (83.02%). Scanning electron microscopy revealed that freeze-drying resulted in the formation of different size, irregular shape glassy particles. This study demonstrated good mucoadhesive properties of freeze-dried powders, which could be incorporated in buccal or oral delivery dosage forms. In conclusion, the microencapsulation of E. ciliata ethanolic extract by freeze-drying is an effective method to produce new value-added pharmaceutical or food formulations with polyphenols.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2644
Author(s):  
Jan Oszmiański ◽  
Sabina Lachowicz ◽  
Paulina Nowicka ◽  
Paweł Rubiński ◽  
Tomasz Cebulak

The present study aimed to evaluate the effect of Jerusalem artichoke processing methods and drying methods (freeze drying, sublimation drying, vacuum drying) on the basic physicochemical parameters, profiles and contents of sugars and polyphenolic compounds, and health-promoting properties (antioxidant activity, inhibition of the activities of α-amylase, α-glucosidase, and pancreatic lipase) of the produced purée. A total of 25 polyphenolic compounds belonging to hydroxycinnamic phenolic acids (LC-PDA-MS-QTof) were detected in Jerusalem artichoke purée. Their average content in the raw material was at 820 mg/100 g dm (UPLC-PDA-FL) and was 2.7 times higher than in the cooked material. The chemical composition and the health-promoting value of the purées were affected by the drying method, with the most beneficial values of the evaluated parameters obtained upon freeze drying. Vacuum drying could offer an alternative to freeze drying, as both methods ensured relatively comparable values of the assessed parameters.


Sign in / Sign up

Export Citation Format

Share Document