scholarly journals COMPUTATIONAL ASSESSMENT FOR SEISMOLOGICAL PERFORMANCE OF MULTISTOREY FLAT SLAB STRUCTURES WITH (AT SPECIFIC POSITIONS) AND WITHOUT SHEAR WALLS

Author(s):  
Shaikh Jafar Shaikh Ismail ◽  
L. G. Patil

In present era, there is a huge scarcity of vacant land led to the development of the high rise structures. For the construction of high rise buildings, normal R.C.C. system is not suitable. These problems can overcome by using flat slab system along with shear wall arrangements. It is very essential that the shear wall position should be appropriate in structure so as to achieve the lateral stiffness and solid structure against lateral loads. In this work, two main factors i.e. with drop panels and without drop panels have been considered for 12 storey structures. In each factor 5 models of various locations of shear wall is taken for consideration. For stabilization of variable parameters such as storey displacement, storey stiffness and storey shear etc the seismic investigation & design of structures had carried out in software ETABS. After performing seismic investigation & design of all the structures, result shows that if we provide shear wall at incorrect or inappropriate locations then it will only increase the dead load and cost of the structure. So the final outcomes we have achieved is to provide shear walls at desired position where lateral loads are more predominantly acting on the structures

Author(s):  
Hridya. K

Torsion force is a load that is a applied to a building through torque. The torque applied creates a shear stress. If a torsion force is large enough, it can cause a building to undergo a twisting action. The main aim of the project is to study the effect of location of shear wall on torsional performance of symmetric and asymmetric high-rise building ,post tensioned slabs are being used in the construction of building hence the thesis also analyze these post tensioned slab structures by changing shear wall configuration. Post tensioned slab structures have weak resistance to lateral loads. so to provide stiffness to structures against lateral forces shear walls are used. A study of 30 storey building in zone III, is considered and determine various parameters like base shear, storey drift, and storey displacement.post-tensioning is a mature technology as it provide efficient, economic and elegant structural solutions for a wide range of applications. Post-tensioned flat slab could be a better option compared to RCC flat slab, in respect of the cost of project and time of construction. ETABS 2017 software is used for the analysis.


2021 ◽  
Vol 11 (1) ◽  
pp. 6043-6063
Author(s):  
Ali Jafarian ◽  
Seyed Babak Jafarian

Considering the increase in the current construction process and the future needs of Iran, the necessity to use high-rise buildings for reduction in urbanization costs and optimal use of land will be inevitable in the future. The performance of steel plate shear wall system as a modern global system, which has an effective application in high-rise buildings and also brings economic benefits compared to previous systems, is evaluated in this study. Steel Plate Shear Walls (SPSW) are a new type of system resistant to wind and earthquake lateral loads, which dates back to the 1970s. In this research, eight samples of shear wall with various stiffening arrangements and sections with ST37 and ST52 alloys are modeled. To evaluate the nonlinear dynamic analysis, the samples are subjected to the San Fernando earthquake force and are modeled and analyzed by ABAQUS software based on the finite element theory. The results of analyzing the samples indicate better performance of the system with stiffener in both vertical and horizontal directions. Also, the use of sections with ST52 alloy has improved the performance of the shear wall by approximately 40%.


Author(s):  
Siddhesh Bisane

Abstract: Structural analysis is the science of determining the effects of different loads on structures. Structural stability and stiffness are a main concern in any high-rise structures. Shear walls are structural members that are mainly responsible for resisting lateral loads predominant on structures. They are mainly responsible to increase the stiffness, reduce story drift and displacement. In order to have a comprehensive understanding about the contribution of shear wall, following research is carried out. This research involves comparing two G+16 structures; one without a shear wall and one with it. The structure has 4 bays of 3m each along X direction and Z direction. In this, we will see how shear wall resists lateral sway and reduces story drift and increases stiffness. As the height increases, the shear wall absorbs more lateral load than the frame. The software to be used for analysis is STAADPro. Keywords: STAADPro, Stiffness, storey displacement, storey drift.


Author(s):  
T. Paulay

The usefulness of certain walls in the structural planning of multistorey buildings
in particular has long been recognised. When external or internal walls are situated in advantageous positions they can be very efficient in resisting lateral loads originating from wind or earthquakes. In addition to the potential strength, which shear walls possess, they offer considerable lateral stiffness and thus can protect a building against non-structural damage that arises when lateral displacement or sway becomes excessive during a moderate seismic disturbance. Only in the last few years did the 
subject receive more attention and many aspects of the behaviour of shear walls are still
 being studied and evaluated. Because of necessary space limitations relevant features, which have been treated in well known publications, will be mentioned very briefly here, but reference to the appropriate source will be made. Other aspects, which are now understood a little better because of more recent research efforts, are presented in more detail. Emphasis is placed on features of behaviour relevant to loading of seismic origin rather than on design recipes.


Author(s):  
Mayuri N. Ade ◽  
Prof. G. D. Dhawle ◽  
Prof. M. M. Lohe

Tall building development is rapidly growing almost everywhere in the world acquainting new difficulties that need to be met with, through engineering evaluation. In tall buildings, lateral loads generated by earthquake or wind load are frequently resisted by providing coupled shear walls. But as the height increases, the building becomes taller and the efficiency of the tall building greatly depends on lateral stiffness and resistance capacity. So, a system called outrigger is introduced which improves overturning stiffness and strength by connecting shear wall core to outer columns. When the Structure is subjected to Lateral forces, the Outrigger and the columns resist the rotation of the core and thus significantly reduce the lateral deflection and base moment, which would have arisen in a free core. During the last three decades, numerous studies have been carried out on the analysis and behaviour of outrigger structures. But this question is remained that how many outriggers system is needed in tall buildings. (Using Staad-Pro)


2020 ◽  
Author(s):  
P.N. Pagare ◽  
P. R. Bhosale ◽  
A.P. Birar ◽  
V.D. Hayatnagarkar ◽  
D.C. Sawant

Shear walls are structural systems which provide stability to structures from lateral loads like wind, seismic loads. As shear wall resist major portions of lateral loads in the lowest portions of the buildings and the frame supports the lateral loads in the upper portions of the building which is suited for soft storey high rise building. The properties of these seismic shear walls dominate the response of the building and therefore, it is important to evaluate the seismic response of the walls appropriately. In this present study, main focus is to determine the solution for shear walls behavior in multi-storey building. Effectiveness of shear walls has been studied with the help of six different models. Model one is bare frame structural system, model two is dual frame structural system and model three is a complete shear wall structural system with internal walls in y-direction and model four is a similar model having internal shear walls in x-direction, model five is again a dual frame having columns at exterior and shear walls in interior placed in y-direction and model six is also an dual frame structure having columns at exterior and shear walls at interior placed in x-direction. An earthquake load is applied to a building of G+15 stories located in zone III, type of soil II and various other factors are considered. Parameters like displacement and storey drift are calculated in all the cases replacing column with shear walls and their locations.


Flat slab is a reinforced concrete slab supported directly by concrete columns without the use of beams .However; in multi-storey buildings it has weak resistance to the lateral loads. Hence this work is concerned to decrease the damage under lateral loading and to minimize the displacement. Shear wall are used to provide stability to structures from lateral loads. The aim of the present study is to analyze effect of shear wall and perimeter beam for flat slab building, and also effectiveness of core shear wall. For present work five models are studied 1) conventional slab building 2) simple flat slab building considered without any drop and column head 3) flat slab with drop building is considered without column head 4) flat slab with drop with perimeter beam building 5) flat slab with perimeter beam and shear wall buildings, each of plan size 25mX25m are selected. For stabilization of structural parameters, shear wall are provided. The seismic parametric studies comprise of roof displacement, base shear, and sequence of hinge formation .from study it concluded that the shear walls significantly increases the base shear capacity and reduces roof displacement and also getting good Performance


2021 ◽  
Vol 23 (2) ◽  
pp. 167-176
Author(s):  
Sekar Mentari ◽  
Rosi Nursani

Indonesia is one of the countries that is prone to earthquakes. In addition to the dead loads, superimposed dead loads, and live loads, the design of buildings in Indonesia must be concerned with earthquake loads. Installing shear walls in the building structure as the Special Moment Frame Dual System is one of a solution to withstand earthquake loads. However, the location of shear walls must be considered, especially in buildings with horizontal irregularities. This study aims to determine the optimum location of the shear walls in a 10-storey building that has U-configuration with dynamic earthquake loads. This research is a numerical simulation ran by modelling the structure with software. To know the effect of the shear wall’s location on a building, several variations of the shear wall configuration with different positions have been conducted. It can be seen the lateral displacement of each floor and the shear force are the response structure to withstand the dynamic earthquake loads. Shear walls that are located close to the center of mass of the building are the optimum variation because the position of the shear wall is the closest to the core area of the building, which is the rotational axis of the building.


2013 ◽  
Vol 19 (6) ◽  
pp. 811-822 ◽  
Author(s):  
Mohammed Jameel ◽  
A. B. M. Saiful Islam ◽  
Mohammed Khaleel ◽  
Aslam Amirahmad

A multi-storey building is habitually modelled as a frame structure which neglects the shear wall/slab openings along with the inclusion of staircases. Furthermore, the structural strength provided by shear walls and slabs is not precisely incorporated. With increasing building height, the effect of lateral loads on a high-rise structure increases substantially. Inclusion of shear walls and slabs with the frame leads to improved lateral stiffness. Besides, their openings may play imperative role in the structural behaviour of such buildings. In this study, 61 multi-storey building configurations have been modelled. Corresponding analyses are performed to cope with the influence of shear walls, slabs, wall openings, masonry walls and staircases in addition to frame modelling. The finite element approach is used in modelling and analysis. Structural responses in each elemental combination are evaluated through equivalent static and free vibration analyses. The assessment reveals that inclusion of only slab components with frame modelling contributes trivial improvement on structural performance. Conversely, the presence of shear wall slabs with frame improves the performance noticeably. Increasing wall openings decreases the structural responses. Furthermore, it is not recommended to model staircases in addition to frame–slab–shear wall modelling, unless the effect of wall openings and slab openings is adequately considered.


2013 ◽  
Vol 351-352 ◽  
pp. 833-837
Author(s):  
Ji Liang Liu ◽  
Hui Chen Cui ◽  
Ming Jin Chu ◽  
Jian Qun Hou

The shear wall built with precast two-way hollow slab is an innovated precast concrete shear wall suitable for housing industrialization. Two shear walls built with precast two-way hollow slabs were tested pseudo-statically under low cyclic lateral loads to acquire their failure process and modes. The effect of the axial compression load was investigated. The study proved that vertical cracks along the vertical holes of the new type shear wall have been appeared to avoid brittle shear failure, and the shear wall developed integral section wall to walls-columns combination. As the results, the shear walls have the adequate deformability. The test results showed that with the increase of axial compressive ratio, crack development has been limited and the energy dissipation capacity has been improved. It also can be found that with the increase of the axial compressive load, shear capacity of the new type shear walls have been improved.


Sign in / Sign up

Export Citation Format

Share Document