scholarly journals Effect of clover root weevil larvae on four annual forage legumes

Author(s):  
J.R. Crush ◽  
L. Ouyang ◽  
P.J. Gerard ◽  
S. Rasmussen

The effect of clover root weevil (Sitona lepidus) (CRW) larval feeding on subterranean, suckling, striated and clustered clovers was compared with white clover in a glasshouse experiment. Growth of suckling, striated, and clustered clover was significantly reduced by CRW, approaching the levels of damage recorded in white clover. N fixation in suckling and clustered clovers was also reduced. Growth and nitrogen fixation of two subterranean clovers (cv. Denmark, cv. Leura) were changed relatively little by CRW larval feeding. The relatively high level of the isoflavonoid biochaninA that was present in subterranean clover roots may explain the species' tolerance of CRW. These results suggest that CRW may not pose a major threat to dryland farming systems based on subterranean clover. Keywords: annual clover, clover root weevil, roots, Trifolium dubium, Trifolium glomeratum, Trifolium striatum, Trifolium subterraneum

2010 ◽  
Vol 63 ◽  
pp. 235-240
Author(s):  
T.M. Eden ◽  
P.J. Gerard ◽  
D.J. Wilson ◽  
N.L. Bell

Two experiments were carried out at Ruakura in soil taken from Whatawhata hill country pasture The relative susceptibility of several annual clovers (Trifolium spp) and perennial white clover (T repens) to slugs (Deroceras reticulatum) clover root weevil (Sitona lepidus) adults native crickets (Nemobius sp) or wheat bugs (Nysius huttoni) was tested by sowing seed of the clovers into separate rows in turf Susceptibility of clovers to clover cyst nematode (Heterodera trifolii) was tested by sowing each clover variety into Whatawhata soil inoculated with the nematode Plant growth was assessed in both experiments 4 weeks after sowing White clover was more susceptible to pests than the annual clovers with slugs and clover root weevil significantly reducing seedling survival and clover cyst nematode significantly reducing plant growth Subterranean clover (T subterraneum) cv Denmark was the least affected by pests showing no significant reduction in survival in the presence of slugs the most damaging pest and no significant decrease in plant root and shoot dry weight when exposed to nematodes


1994 ◽  
Vol 34 (4) ◽  
pp. 459 ◽  
Author(s):  
MAE Lattimore ◽  
HG Beecher ◽  
KL O'Callaghan

Four temperate clovers were grown on a typical rice-growing soil in the Murrumbidgee Valley, New South Wales, to assess their establishment and early growth potential. Subterranean clover (Trifolium subterraneum var. yanninicum) cv. Trikkala, Persian clover (T. resupinatum) cv. Maral, balansa clover (T. michelianum var. balansae) cv. Paradana, and white clover (T. repens) cv. Haifa were sown immediately following a rice crop in autumn of 3 consecutive years. Seven sowing methods were compared, including combinations of surface or drill sowing with land preparation techniques commonly used in rice-farming systems. All cultivars established successfully. Trikkala had the best establishment on the basis of per cent seed sown in year 2, and equal best in years 1 and 3, although Paradana and Maral had higher plant densities at the sowing rates used. Paradana and Maral produced the highest dry matter yields and Haifa the lowest (P<0.05) in the growing period to mid-spring. Sowing method strongly influenced (P<0.05) both establishment and yield of clover. Sowing into a dense rice canopy before harvest severely restricted clover performance, while harvesting rice before sowing greatly improved (P<0.05) clover establishment and dry matter production. Establishment from surface sowing was generally more successful than from drill sowing, although yields with both methods were mostly satisfactory. Establishment and yields were highest after burning stubble, but this effect was variable and not always significant. Sowing after cultivation was not successful, especially in the 2 wetter years, due to poor seedbed preparation and waterlogging.


Author(s):  
J.R. Crush ◽  
P.J. Gerard ◽  
L. Ouyang ◽  
D.J. Wilson

The effect on plant growth of clover root weevil (CRW) larval feeding on nodules and roots was examined for the annual clovers, subterranean cv. Leura, balansa cv. Bolta, arrowleaf cv. Arrowtas and Persian cv. Mihi, and white clover cv. Tribute. Mini-swards of each clover species were used in a glasshouse experiment, with half of these exposed to CRW larval feeding. Keywords: Sitona lepidus, root herbivory, annual clovers, drought


Author(s):  
J.R. Crush ◽  
B.M. Cooper ◽  
D.R. Woodfield ◽  
P.J. Gerard

Clover root weevil (CRW) has become a major pest of white clover in pastures in much of the North Island. In contemporary, intensively stocked pastures, high volumes of nitrogen (N) cycling through the soil/plant/ animal system stimulate grass growth and reduce the clover content of pastures. Clover root weevil imposes further stresses on clovers. A range of white and red clover germplasm was evaluated f or CRW tolerance from 2002-2005 on Waikato dairy and sheep/beef farms. Results confirmed the importance of good agronomic adaptation if clovers are to survive the additional stress of CRW. Two recently released white clover cultivars (Grasslands Kopu II and Tribute) were amongst the top performing lines under dairy farm grazing. Under sheep/ beef grazing, spreading type red clovers also performed well. A white c lover breeding line selected for tolerance of plant-feeding nematodes was in the top group of clovers at both sites. Reducing stresses on clovers from other pasture pests will contribute to improved tolerance to CRW. A glasshouse experiment showed that CRW larval feeding can severely damage white clover nodules and reduce N fixation. The plants have considerable capacity to grow new nodules but this diverts energy away from other growth processes. Our conclusions are that welladapted, vigorous white clover cultivars are better able to cope with the additional stress imposed by the root weevil. Good pasture management and attention to fertiliser requirements can improve clover survival under root weevil herbivory. New generation red clovers show considerable potential for weevil infested areas. Coselection for tolerance/resistance to other major clover pests e.g. clover flea and root nematodes will improve plant performance under CRW stress. Keywords: clover root weevil, nitrogen fixation, plant breeding, red clover, white clover


2000 ◽  
Vol 51 (3) ◽  
pp. 377 ◽  
Author(s):  
G. M. Lodge

Seedlings of 3 perennial grasses, Danthonia linkii Kunthcv. Bunderra, D. richardsonii Cashmore cv. Taranna(wallaby grasses), and Phalaris aquatica L. cv. Sirosa,were each grown in replacement series mixtures with seedlings ofTrifolium repens L. (white clover),Trifolium subterraneum L. var. brachycalycinum (Katzn.et Morley) Zorahy & Heller cv. Clare (subterraneanclover), and Lolium rigidum L. (annual ryegrass). Plantswere sown 5 cm apart in boxes (45 by 29 by 20 cm) at a density of 307plants/m2. Maximum likelihood estimates were usedto derive parameters of a non-linear competition model using the dry matterweights of perennial grasses and competitors at 3 harvests, approximately 168,216, and 271 days after sowing. Intra-plant competition was examined inmonocultures of each species, grown at plant spacings of 2, 5, and 8 cm apartwith plants harvested at the above times.Competition occurred in all perennial grass–competitor mixtures, exceptin those of each perennial grass with white clover and thephalaris–subterranean clover mixture (Harvest 1) and those withD. richardsonii and phalaris grown with white clover(Harvest 2). For D. richardsonii (Harvests 1 and 2) andD. linkii (Harvest 1 only) grown with white clover andthe phalaris–subterranean clover (Harvest 1), the two species in themixture were not competing. In the phalaris–white clover mixture, eachspecies was equally competitive (Harvests 1 and 2). These differences incompetition and aggressiveness reflected differences in individual plantweights in monocultures where there was an effect (P < 0.05) of species ondry matter weight per box, but no significant effect of plant spacing.These data indicated that for successful establishment,D. richardsonii and D. linkiishould not be sown in swards with either subterranean clover or white clover,or where populations of annual ryegrass seedlings are likely to be high.Phalaris was more compatible with both white clover and subterranean clover,but aggressively competed with by annual ryegrass.


2004 ◽  
Vol 94 (5) ◽  
pp. 433-439 ◽  
Author(s):  
S.N. Johnson ◽  
P.J. Gregory ◽  
P.J. Murray ◽  
X Zhang ◽  
I.M. Young

AbstractThis study investigated the ability of neonatal larvae of the root-feeding weevil, Sitona lepidus Gyllenhal, to locate white clover Trifolium repens L. (Fabaceae) roots growing in soil and to distinguish them from the roots of other species of clover and a co-occurring grass species. Choice experiments used a combination of invasive techniques and the novel technique of high resolution X-ray microtomography to non-invasively track larval movement in the soil towards plant roots. Burrowing distances towards roots of different plant species were also examined. Newly hatched S. lepidus recognized T. repens roots and moved preferentially towards them when given a choice of roots of subterranean clover, Trifolium subterraneum L. (Fabaceae), strawberry clover Trifolium fragiferum L. (Fabaceae), or perennial ryegrass Lolium perenneL. (Poaceae). Larvae recognized T. repens roots, whether released in groups of five or singly, when released 25 mm (meso-scale recognition) or 60 mm (macro-scale recognition) away from plant roots. There was no statistically significant difference in movement rates of larvae.


1991 ◽  
Vol 42 (5) ◽  
pp. 893 ◽  
Author(s):  
DC Edmeades ◽  
FPC Blamey ◽  
CJ Asher ◽  
DG Edwards

Ten temperate pasture legumes inoculated with appropriate rhizobia were grown for 31 days in flowing solution culture. Solution ionic strength was approximately 2700 8M and contained inorganic nitrogen (150 , 8M NO3-) only at the commencement of the experiment. Solution pH was maintained at 4.5, 5.0, 5.5 and 6.0. Also, five aluminium (Al) treatments were imposed, with nominal Al concentrations of 0, 3, 6, 12 and 24 8M (2.5, 7.1, 8.3, 11.2 and 24.7 8M Al measured) at pH 4.5. Solution pH <6 . 0 markedly reduced total dry mass (TDM) in all cultivars of white clover (Trifolium repens) cvv. 'Grasslands Pitau, Huia, G18 and Tahora' and red clover (Trifolium pratense) cvv. 'Grassland Turoa and Pawera', and to a lesser extent in the two subterranean clover (Trifolium subterraneum) cvv. 'Tallarook and Woogenellup'. In contrast, solution pH had no effect on the growth of Lotus corniculatus cv. Maitland, while Lotus pedunculatus cv. Maku grew best at pH 4.5. Lotus pedunculatus cv. Maku grew best in solution where the sum of the activities of the monomeric Al species {Alm} was maintained at 5.9 8M. The growth of all other species was decreased with Al in solution, a 50% reduction in TDM being associated with c. 6 8M {Alm] for white clover and subterranean clover, and c. 3 8M in red clover and Lotus corniculatus cv. Maitland.


1999 ◽  
Vol 50 (6) ◽  
pp. 1047 ◽  
Author(s):  
B. S. Dear ◽  
M. B. Peoples ◽  
P. S. Cocks ◽  
A. D. Swan ◽  
A. B. Smith

The proportions of biologically fixed (Pfix) plant nitrogen (N) and the total amounts of N2 fixed by subterranean clover (Trifolium subterraneum L.) growing in pure culture and in mixtures with different densities (5, 10, 20, or 40plants/m2) of newly sown phalaris (Phalaris aquatica L.) or lucerne (Medicago sativa L.) were followed over 3 years in a field study using the 15N natural abundance technique. The amount of fixed N in subterranean clover was linearly related to shoot biomass. Over the 3-year period, subterranean clover fixed 23–34 kg N/t shoot biomass compared with 17–29 kg N/t shoot biomass in lucerne. Based on above-ground biomass, pure subterranean clover fixed 314 kg N/ha over the 3 years compared with 420–510 kg N/ha by lucerne–clover mixtures and 143–177 kg N/ha by phalaris–clover mixtures. The superior N2 fixation by the lucerneŒsubterranean clover mixtures was due to the N fixed by the lucerne and the presence of a higher subterranean clover biomass relative to that occurring in the adjacent phalaris plots. In the first year, 92% of subterranean clover shoot N was derived from fixation compared with only 59% of lucerne. The reliance of clover upon fixed N2 remained high (73–95%) throughout the 3 years in all swards, except in pure subterranean clover and lucerne in August 1996 (56 and 64%, respectively). Subterranean clover usually fixed a higher proportion of its N when grown in mixtures with phalaris than with lucerne. The calculated Pfix values for lucerne (47–61% in 1995 and 39–52% in 1996) were consistently lower than in subterranean clover and tended to increase with lucerne density. Although lucerne derived a lower proportion of its N from fixation than subterranean clover, its tissue N concentration was consistently higher, indicating it was effective at scavenging soil mineral N. It was concluded that including lucerne in wheat-belt pastures will increase inputs of fixed N. Although lucerne decreased subterranean clover biomass, it maintained or raised Pfix values compared with pure subterranean clover swards. The presence of phalaris maintained a high dependence on N2 fixation by subterranean clover, but overall these swards fixed less N due to the lower clover herbage yields. Perennial and annual legumes appear compatible if sown in a mix and can contribute more N2 to the system than where the annual is sown alone or with a perennial grass. These findings suggest that increases in the amount of N2 fixed can be achieved through different legume combinations without interfering greatly with the N fixation process. Different combinations may also result in more efficient use of fixed N2 through reduced leaching. Further work looking at combinations of annuals possibly with different maturity times, different annual and perennial legume combinations, and pure combinations of perennial (e.g. lucerne) could be investigated with the aim of maximising N2 fixation and use. Grazing management to encourage clover production in mixtures with phalaris will be necessary before the potential of subterranean clover to contribute fixed N2 in these swards is fully realised.


2011 ◽  
Vol 62 (3) ◽  
pp. 236 ◽  
Author(s):  
S. A. Conning ◽  
M. Renton ◽  
M. H. Ryan ◽  
P. G. H. Nichols

Biserrula (Biserrula pelecinus L.) is a recently domesticated annual pasture legume developed for ley farming systems that have traditionally relied upon subterranean clover (Trifolium subterraneum L.). This study examined competitive interactions between biserrula and subterranean clover and the common broad-leaf weed capeweed (Arctotheca calendula L.) during seedling establishment and vegetative growth, in order to develop guidelines for successful legume pasture management. Two glasshouse experiments were conducted to investigate the allocation of biomass to roots and shoots in biserrula, capeweed, and subterranean clover and its relationship with competitive ability in the first 100 days after sowing. In Experiment 1, capeweed had a higher relative growth rate of shoots and roots than the two legumes and developed a more extensive root system. Experiment 2 consisted of growing binary mixtures of the three species at different densities. The effect of competition on the biomass of biserrula, capeweed, and subterranean clover was best modelled by a power–exponential model. Increasing capeweed densities suppressed the biomass production of both biserrula and subterranean clover, whereas capeweed biomass increased with increasing densities of subterranean clover. This study suggests that the competitive advantage of capeweed is mainly conferred during the seedling stage. It also suggests that biserrula and subterranean clover germinating at the same time can co-exist as a mixed sward, at least up until flowering, if biserrula density is high relative to subterranean clover.


2001 ◽  
Vol 52 (3) ◽  
pp. 415 ◽  
Author(s):  
D. C. Cohen

An in sacco (nylon bag) technique was used to estimate the degradability of dry matter (DM) and crude protein, and to estimate the effective rumen degradability of protein (ERDP), for 3 irrigated clover herbages. Pasture characteristics (nutritive values and leaf: stem ratios) were also described, and relationships to ERDP established. The nutritive value characteristics and degradabilities of white clover (Trifolium repens L.), Persian clover (Trifolium resupinatum L.), and subterranean clover (Trifolium subterraneum L.) were also compared for various regrowth periods (of 3, 4, 6, and 12 weeks). Nutritive value characteristics of clover herbages varied from 9.9 to 11.9 MJ/kg DM for metabolisable energy, 153 to 304 g/kg DM for crude protein, and 209 to 377 g/kg DM for neutral detergent fibre. The leaf: stem ratio correlated well with the crude protein content of the clovers, with herbages consisting of more leaf generally having superior crude protein content (R2 = 0.64, P < 0.001). The effective rumen degradability of protein for clover herbages ranged from 60 g/kg DM for mature (12 week regrowth) subterranean clover to 195 g/kg DM for vegetative (3 weeks regrowth) Persian clover. For clover herbages with a 3-week regrowth period, after initial cutting to 5 cm, and at ruminal outflow rates of 0.08/h, the effective rumen degradability of protein varied from 136 to 195 g/kg DM. A positive relationship between crude protein and ERDP (R2 = 0.82) suggested that ERDP could be estimated for clover herbages that have been previously assessed for crude protein content, obviating the need for in sacco studies. Calculated degradabilities were lower for all clovers when higher ruminal outflow rates were assumed. Using the metabolisable protein system, metabolisable protein supply and metabolisable protein in excess of animal requirements were calculated. Ruminal losses of nitrogen were also estimated for cows consuming white clover of varying regrowth periods in both early and late lactation. It was concluded that metabolisable protein supply is unlikely to limit production in these examples. At regrowth periods of 3 weeks, metabolisable protein contributions from microbial and dietary sources were similar, and twice that required by the animal. Ruminal losses of nitrogen were substantial and amounted to 66—23% of nitrogen intake. In the experiments reported here, if all of the energy required to excrete excess protein (as urea) could instead be used for the production of milk, cows may have produced 0.5mp;mdash;2.0 kg more milk per day. Such losses could potentially be reduced if the protein content and/or degradabilities of clover herbages were reduced, and/or energy rich supplements were offered.


Sign in / Sign up

Export Citation Format

Share Document