scholarly journals Key achievements in gene therapy development and its promising progress with gene editing tools (ZFN, TALEN, CRISPR/Cas9)

2019 ◽  
Vol 2 (1) ◽  
pp. 1-9
Author(s):  
Dina Franic ◽  
Paula Dobrinic ◽  
Petra Korac

Gene therapy concept is based on introduction of the wild-type allele into a patient’s genome in order to reverse a specific mutation. It is designed to treat hereditary diseases as well as the other diseases occurring later in life. Gene therapy was first mentioned in the 1960s and 70s, whereupon a series of studies was carried out, and in 1990 the first successful gene therapy was conducted. Since then about 2 600 clinical trials based on this concept were completed or are in progress. The two biggest issues are introduction of an exogenous DNA to target tissue, and its controlled integration in the genome. Until recently, the exogenous DNA sequences were incorporated randomly in the patient’s genome. Even though most of these treatments gave positive results, there was always a possibility of insertional mutagenesis. Controlling the integration place has rapidly progressed with the development of gene editing tools: ZFN, TALEN and CRISPR/Cas9. Although they have been used in only several clinical studies, gene editing tools are a small step away from clinical usage. In this review, we will give historical overview of gene therapy development and describe recent tools that can be used in precision medicine.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3622-3622
Author(s):  
Nozomu Kawashima ◽  
Yusuke Okuno ◽  
Yuko Sekiya ◽  
Xinan Wang ◽  
Atsushi Narita ◽  
...  

Abstract Introduction Gene therapy has been developed for genetic diseases, either to restore normal function for loss-of-function mutations or to inhibit gain-of-function mutations. Gene addition using genetically engineered viral and plasmid vectors has successfully corrected cell pathophysiology resulting in the production of functional proteins. Therapeutic safety has been reinforced by the use of self-inactivating vectors; however, the potential risk of tumorigenesis raises concerns for insertional mutagenesis combined with acquired somatic mutations. Recent advances in gene editing using an RNA-guided endonuclease (RGEN), known as the CRISPR/Cas9 system, have opened a new frontier for the in situ correction of disease-associated mutations. Genomic DNA of cells harboring mutations can be excised and replaced with a DNA template for the functional gene sequence using homology-directed repair (HDR). The advantages of this repair include fewer off-target effects and a reduced risk of copy number changes compared with gene addition using vectors. Fanconi anemia (FA) is a syndrome of inherited bone marrow failure, characterized by the deficient regulation of DNA double-strand break repair. Clinical trials of gene therapy using viral vectors are still on-going with partial success; therefore, a new gene editing technique deserves attention. However, the feasibility of this approach in diseases with impaired HDR, such as FA, is unknown. Therefore, we used an RGEN to generate a cell line harboring a disease-causing point mutation in an FA-associated gene and elucidated the efficacy of restoring the mutation thereafter. Methods pSpCas9(BB) (PX330) was used to express humanized S. pyogenes Cas9 and single guide RNAs (sgRNAs) of interest. The sgRNAs were designed by searching for NGG protospacer adjacent motif (PAM) sequences near the point mutation target sites. The candidate sgRNAs were designed to be specific for the FANCC c.67delG:p.D23Ifs*23 mutation type (MT) or wild type (WT): gRNA#4, 5′-ATGGGATCAGGCTTCCACTT-3′ and gRNA#5, 5′-GAAGCTTTCTGTATGGGATC-3′ were specific for the WT sequence; whereas, gRNA M4, 5′-TATGGATCAGGCTTCCACTT-3′ and gRNA M5, 5′-AGAAGCTTTCTGTATGGATC-3′ were specific for the MT sequence. pCAG-EGxxFP, an EGFP-based reporter plasmid for the HDR that harbored the 500-bp target region of the WT or MT FANCC, was constructed for the gRNA selection. An HDR template construct was designed to incorporate a puromycin-resistant gene flanked by two loxP sites and two homologous arms containing the WT or MT sequence. HEK293T cells harboring the WT FANCC sequence were genetically edited by the above-mentioned plasmids. Results To validate an efficient and specific sgRNA for DNA double-strand breaks, we cotransfected pCAG-EGxxFP-FANCC WT or MT and pSpCas9(BB)-FANCC-gRNA plasmids into HEK293T cells. EGFP fluorescence, whose intensity is correlated with the efficacy of HDR and thus the efficacy and specificity of sequence-specific DNA excision, was observed 48 h later, and we determined that gRNA#4 and gRNA M4 were specific for the WT and MT sequences, respectively. To generate cells harboring the MT FANCC sequence, HEK293T cells were cotransfected with pSpCas9(BB)-FANCC-gRNA#4 and the HDR template plasmid harboring the MT FANCC. A cell harboring biallelic MT FANCC was selected by adding puromycin and single-cell cloning. The transient expression of Cre recombinase in this clone successfully deleted the drug-selection cassette, and 293T-FANCC c.67delG cells were established. This cell showed the loss of FANCD2 monoubiquitination, a hallmark of a deficient FA core complex. Next, the 293T-FANCC c.67delG cells were cotransfected with pSpCas9(BB)-FANCC-gRNA M4 and the HDR template with the WT FANCC. This restoration of the mutated FANCC sequence resulted in a high frequency of at least monoallelic correction and the restoration of FANCD2 monoubiquitination. Conclusions The feasibility of genome editing was demonstrated in cells harboring an FA mutation, which can be a foothold for future therapy using precision gene restoration in patients with impaired HDR. Disclosures No relevant conflicts of interest to declare.


2018 ◽  
Author(s):  
Hirotaka Ata ◽  
Thomas L. Ekstrom ◽  
Gabriel Martínez-Gálvez ◽  
Carla M. Mann ◽  
Alexey V. Dvornikov ◽  
...  

AbstractOne key problem in precision genome editing is the resultant unpredictable plurality of sequence outcomes at the site of targeted DNA double-strand breaks (DSBs). This is due to the typical activation of the versatile Non-homologous End Joining (NHEJ) pathway. Such unpredictability limits the utility of somatic gene editing for applications including gene therapy and functional genomics. For germline editing work, the accurate reproduction of identical alleles using NHEJ is a labor intensive process. In this study, we propose inducing Microhomology-mediated End Joining (MMEJ) as a viable solution for improving somatic sequence homogeneity in vivo, capable of generating a single predictable allele at high rates (56% ~ 86% of the entire mutant allele pool). Using a combined dataset from zebrafish (Danio rerio) in vivo and human HeLa cell in vitro as a training dataset, we identified specific contextual sequence determinants surrounding genomic DSBs for robust MMEJ pathway activation. We then applied our observation and prospectively designed MMEJ-inducing sgRNAs against a variety of proof-of-principle genes and demonstrated a high level of mutant allele homogeneity at these loci. F0 mutant zebrafish embryos and larvae generated with these gRNAs faithfully recapitulated previously reported, recessive loss-of-function phenotypes. We also provide a novel algorithm MENTHU (http://genesculpt.org/menthu/) for improved prediction of candidate MMEJ loci, suitable for both targeted and genome-wide applications. We believe that this MMEJ-centric approach will have a broad impact on genome engineering and its applications. For example, whereas somatic mosaicism hinders efficient recreation of a knockout mutant allele at base pair resolution via the standard NHEJ-based approach, we demonstrate that F0 founders transmitted the identical MMEJ allele of interest at high rates. Most importantly, the ability to directly dictate the reading frame of an endogenous target will have important implications for gene therapy applications in human genetic diseases.Author SummaryNew gene editing tools precisely break DNA at pre-defined genomic locations, but cells repair these lesions using diverse pathways that often lead to unpredictable outcomes in the resulting DNA sequences. This sequence diversity in gene editing outcomes represents an important obstacle to the application of this technology for human therapies. Using a vertebrate animal as a model system, we provide strong evidence that we can overcome this obstacle by selectively directing DNA repair of double-stranded breaks through a lesser-described pathway termed Microhomology-mediated End Joining (MMEJ). Unlike other, better-understood pathways, MMEJ uses recurring short sequence patterns surrounding the site of DNA breakage. This enables the prediction of repair outcomes with improved accuracy. Importantly, we also show that preferential activation of MMEJ is compatible with effective gene editing. Finally, we provide a simple algorithm and software for designing DNA-breaking reagents that have high chance of activating the MMEJ pathway. We believe that the MMEJ-centric approach to be broadly applicable for a variety of gene editing applications both within the laboratory and for human therapies.Author ContributionHA contributed in Conceptualization, Data Curation, Formal Analysis, Investigation, Funding Acquisition, Methodology, Validation, Visualization, Writing – Original draft preparation, and Writing – Review and Editing. TLE contributed in Data Curation, Investigation, Writing – Original draft preparation, and Writing – Review and Editing. GMG contributed in Software, Validation, and Writing. CMM contributed in Software Validation, and Writing. AVD contributed in Investigation, Methodology, Validation, and Writing – Review and Editing. KJS contributed in Investigation and Writing – Review and Editing. ACM contributed in Conceptualization, Data Curation, Investigation, and Writing – Review and Editing. DD contributed in Funding Acquisition, Resources, and Writing – Review and Editing. KJC contributed in Conceptualization, Funding Acquisition, Resources, Supervision, and Writing – Review and Editing. SCE contributed in Conceptualization, Funding Acquisition, Project Administration, Resources, Supervision, Writing – Review and Editing.


Author(s):  
Wesley Wierson ◽  
Alex Abel ◽  
Elizabeth Siegler ◽  
Stephen Ekker ◽  
Chad Johannes ◽  
...  

With rapid advances in gene editing and gene therapy technologies, the development of genetic, cell, or protein-based cures to disease are no longer the realm of science fiction but that of today’s practice. The impact of these technologies are rapidly bringing them to the veterinary market as both enhanced therapeutics and towards modeling their outcomes for translational application. Simply put, gene editing enables scientists to modify an organism’s DNA a priori through the use of site-specific DNA targeting tools like clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR/Cas9). Gene therapy is a broader definition that encompasses the addition of exogenous genetic materials into specific cells to correct a genetic defect. More precisely, the U.S Food and Drug Administration (FDA) defines gene therapy as “a technique that modifies a person’s genes to treat or cure disease” by either (i) replacing a disease-causing gene with a healthy copy of the gene; (ii) inactivating a disease-causing gene that was not functioning properly; or (iii) introducing a new or modified gene into the body to help treat a disease. In some instances, this can be accomplished through direct transfer of DNA or RNA into target cells of interest or more broadly through gene editing. While gene therapy is possible through the simple addition of genetic information into cells of interest, gene editing allows the genome to be reprogrammed intentionally through the deletion of diseased alleles, reconstitution of wild type sequence, or targeted integration of exogenous DNA to impart new function. Cells can be removed from the body, altered, and reinfused, or edited in vivo. Indeed, manufacturing and production efficiencies in gene editing and gene therapy in the 21st century has brought the therapeutic potential of in vitro and in vivo reprogrammed cells, to the front lines of therapeutic intervention (Brooks et al., 2016). For example, CAR-T cell therapy is revolutionizing hematologic cancer care in humans and is being translated to canines by us and others, and gene therapy trials are ongoing for mitral valve disease in dogs.


Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 779
Author(s):  
Man Teng ◽  
Yongxiu Yao ◽  
Venugopal Nair ◽  
Jun Luo

In recent years, the CRISPR/Cas9-based gene-editing techniques have been well developed and applied widely in several aspects of research in the biological sciences, in many species, including humans, animals, plants, and even in viruses. Modification of the viral genome is crucial for revealing gene function, virus pathogenesis, gene therapy, genetic engineering, and vaccine development. Herein, we have provided a brief review of the different technologies for the modification of the viral genomes. Particularly, we have focused on the recently developed CRISPR/Cas9-based gene-editing system, detailing its origin, functional principles, and touching on its latest achievements in virology research and applications in vaccine development, especially in large DNA viruses of humans and animals. Future prospects of CRISPR/Cas9-based gene-editing technology in virology research, including the potential shortcomings, are also discussed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wei-Hong Lai ◽  
Chiung-Yao Fang ◽  
Ming-Chieh Chou ◽  
Mien-Chun Lin ◽  
Cheng-Huang Shen ◽  
...  

AbstractThe ultimate goal of gene delivery vectors is to establish specific and effective treatments for human diseases. We previously demonstrated that human JC polyomavirus (JCPyV) virus-like particles (VLPs) can package and deliver exogenous DNA into susceptible cells for gene expression. For tissue-specific targeting in this study, JCPyV VLPs were conjugated with a specific peptide for bladder cancer (SPB) that specifically binds to bladder cancer cells. The suicide gene thymidine kinase was packaged and delivered by SPB-conjugated VLPs (VLP-SPBs). Expression of the suicide gene was detected only in human bladder cancer cells and not in lung cancer or neuroblastoma cells susceptible to JCPyV VLP infection in vitro and in vivo, demonstrating the target specificity of VLP-SPBs. The gene transduction efficiency of VLP-SPBs was approximately 100 times greater than that of VLPs without the conjugated peptide. JCPyV VLPs can be specifically guided to target particular cell types when tagged with a ligand molecule that binds to a cell surface marker, thereby improving gene therapy.


2021 ◽  
Author(s):  
Moataz Dowaidar

The CCR5 null genotype generation has been a main focus in the HIV gene therapy industry. The presence of the X4 tropic virus, mobilization of HSPCs, the quality of the cells for manipulation, and gene editing efficiency appear to be the main obstacles in translating this technique. Unintended off-target cleavage is a key problem in CRISPR/Cas9 editing. With the development of small molecule expansion methods for cord blood HSPC, it would be advantageous to modify CCR5 in cord blood cells and expand them for transplantation. The generation of engraftable HSPCS from iPSCs would be an ideal technique for HSCC gene therapy.The haplotype-characterized iPSC would be the donor for many patients, and it could be a commercially available product. The 32 C CR5 homozygous people had no elevated mortality risks according to whole-exome sequencing and whole-genome genotyping, according to CCR 5 positive people, and had no higher mortality risks compared to those who were HIV positive. Recent advances in gene editing, such as non-viral delivery of Cas9 ribonucleoproteins, incorporation of a 3X-nuclear localization signal into spCas9, and use of HiFi Cas9 with chemically modified sgRNAs, can be combined with recent advances in transplantation. Infusing modest doses of gene modified primitive HSPC fractions indicated by CD34 + CD90 + CD45RA-, which can engraft better, is another option for lowering the cost of gene therapy.


Development ◽  
1987 ◽  
Vol 99 (1) ◽  
pp. 15-23
Author(s):  
L.D. Etkin ◽  
B. Pearman

We analysed the fate, expression and germ line transmission of exogenous DNA which was microinjected into fertilized eggs of Xenopus laevis. DNA was injected into fertilized eggs within 1 h following fertilization. The injected DNA was dispersed around the site of injection and became localized to cleavage nuclei by stage 6. Injected DNA persisted in the tissues of 6- to 8-month-old frogs and exhibited a mosaic pattern of distribution with regard to the presence or absence and copy number between different tissues. We detected the exogenous DNA sequences in 60% of injected frogs. Restriction digestion analysis of this DNA suggested that it is not rearranged and was organized as head-to-tail multimers. The copy number varied from 2 to 30 copies/cell in various tissues of the same frog. Plasmid pSV2CAT which contains the prokaryotic gene coding for chloramphenicol acetyl transferase (CAT) enzyme linked to the SV40 early gene promoter was expressed in 50% of the animals containing the gene. The pattern of expression, however, varied between different animals and could not be correlated with copy number. We also showed that the exogenous DNA sequences were transmitted through the male germ line and that each offspring contained the gene integrated into a different region of the genome.


2021 ◽  
Author(s):  
Moataz Dowaidar

Gene therapy involves transferring genetic material (DNA or RNA) to repair, regulate or replace genes to cure a disease. One of the most crucial barriers is successful delivery of the targeted gene into the target tissue. Various vector-based approaches have been developed to deliver the transgene to the target cells. In different cancers, numerous of these vectors are being developed for purposes such as immunotherapy, suicide gene therapy, microRNA (miRNA) focused treatment, oncogene silencing, and gene editing using CRISPR/Cas9. This article reviews several alternatives to cancer gene therapy, as well as their preclinical and clinical outcomes, possible limitations, and overall therapy effects. Ways of delivering cancer gene therapy include direct methods for introducing genetic material. Nonviral vectors are easy to manufacture and may be chemically modified to increase their usefulness. Cationic polymers such as Poly-L-Lysine (PLL) and Polyethylenimine (PEI-SS) are the most extensively used polycationic polymers for gene transfer, particularly in vitro. Many RNAi-based therapeutic approaches are approaching the clinical stage, and nanocarriers are likely to play a crucial role in treating specific cancers. In the previous decade, non-viral approaches were used in more than 17 percent of all gene therapy trials. The message is that this is a safe and effective technique for transferring genes to cancer patients who need it to be a safe, successful therapy. Exosomes were developed to carry oncogene-specific short interfering RNA. Sushrut and colleagues revealed that exosomes provide superior carriers of short RNA and prevent tumor growth than liposomes. Inhalation-based gene therapy (aerosol-mediated gene delivery) has gained pace as a feasible treatment approach, especially for lung cancer. Because the intended transgene is steered to specific cells/tissues, this should further increase therapeutic efficiency.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
A Asghar ◽  
Z Asjad ◽  
H Tahir ◽  
Z Maheen ◽  
S Hanif

The blood disorder, Hemophilia, has its roots embedded deep into the history of genetic disorders. The European royal family is one of the most prominent families to be affected by this disease thus, dubbing it 'the royal disease'. The types of Hemophilia are divided into two based on the type of coagulation factor mutation found in the patient. For treating haemophilia, gene therapy is done by using different vectors such as lentiviral and retroviral vectors but due to the production of limited expression different adeno associated virus (AAV) strains are used. Some engineerly modified vectors are currently used to get the best possible results. The clinical trials prove the efficacy of these vectors so through their obtained statistical consideration, patient experience and population study once can design vaccines and drugs for haemophilia patients but also due to pre-existing Nabs and pre-existing HCV or HBV infection, the general application of AAV gene therapy is currently limited. The possibility of gene editing for the repair of the mutation is on the horizon.


Sign in / Sign up

Export Citation Format

Share Document