scholarly journals THE HALL EFFECT DETECTION STUDIES IN THE GEOLOGICAL ENVIRONMENT (THE RATIONALE OF REPEATED EXPERIMENTS)

2019 ◽  
Vol 2 (2) ◽  
pp. 87-94
Author(s):  
Vladimir Gurev ◽  
Vladimir Mogilatov ◽  
Vladimir Potapov

This work is devoted to identifying the influence of the Hall effect in the geological environment on the electrical exploration methods data on the example of controlled source transient electromagnetic (TEM) method. It summarizes the results of previous theoretical studies, as well as the results of the summer field work in 2018 and the authors' recommendations for further field studies planned for the summer of 2019. Much attention is paid to the aspects of the field experiment, as well as the conditions of its correctness. The estimation of the Hall conductivity on the basis of already available results is given.

Author(s):  
Vladimir V. Potapov ◽  
◽  
Evgeniy Yu. Antonov ◽  
Alexandr N. Shein ◽  
Svetlana Yu. Artamonova ◽  
...  

The paper presents the results of geophysical studies using the method of transient electromagnetic field (TEM) in the area of the «Crystal» underground nuclear explosion in 2008 and 2019. The measurement technique and signal differences in different years related to the noise situation at the site of work are described in detail. Geoelectric sections constructed from the results of field studies show the high information content of the TEM method in the study of Yakutia and can be used to study the effect of the «Crystal» underground nuclear explosion on the geological environment.


2021 ◽  
Vol 62 (12) ◽  
pp. 1430-1439
Author(s):  
V.S. Mogilatov ◽  
V.V. Potapov ◽  
A.N. Shein ◽  
V.A. Gur’ev

Abstract —A mathematical model of the influence of the Earth’s magnetic field (the Hall effect) on results of the controlled source transient electromagnetic (TEM) method has been elaborated. For identification of this effect, we propose a schematic layout of the experimental grounded system with a pulsed loop source and signals recording by radial receive lines equally spaced relative to the loop. The 2018–2019 special field experiments were conducted in the Tatar region of the West Siberian Lowland with an aim to estimate the Hall effect contributions to the TEM method. To detect the Hall effect, transient electromagnetic responses were measured mainly by four receive lines radiating from a 500×500 m square loop. Analysis of the TEM results processing aimed at improving the signal quality and reducing the interference revealed a great similarity in signals from the radial lines, which is theoretically possible only under the Hall effect. Comparison of the field signals with the theoretical ones enabled estimation of the components caused by the Hall effect, in particular, conductivity at ~0.002 S/m.


2021 ◽  
Vol 11 (7) ◽  
pp. 2979
Author(s):  
Maxime Fortin Faubert ◽  
Dominic Desjardins ◽  
Mohamed Hijri ◽  
Michel Labrecque

The Salix genus includes shrub species that are widely used in phytoremediation and various other phytotechnologies due to their advantageous characteristics, such as a high evapotranspiration (ET) rate, in particular when cultivated in short rotation intensive culture (SRIC). Observations made in past field studies suggest that ET and its impact on soil hydrology can also lead to increases in soil pollutant concentrations near shrubs. To investigate this, sections of a mature willow plantation (seven years old) were cut to eliminate transpiration (Cut treatment). Soil concentrations of polychlorinated biphenyls (PCBs), aliphatic compounds C10–C50, polycyclic aromatic hydrocarbons (PAHs) and five trace elements (Cd, Cr, Cu, Ni and Zn) were compared between the Cut and the uncut plots (Salix miyabeana ‘SX61’). Over 24 months, the results clearly show that removal of the willow shrubs limited the contaminants’ increase in the soil surface, as observed for C10–C50 and of 10 PAHs under the Salix treatment. This finding strongly reinforces a hypothesis that SRIC of willows may facilitate the migration of contaminants towards their roots, thus increasing their concentration in the surrounding soil. Such a “pumping effect” in a high-density willow crop is a prominent characteristic specific to field studies that can lead to counterintuitive results. Although apparent increases of contaminant concentrations contradict the purification benefits usually pursued in phytoremediation, the possibility of active phytoextraction and rhizodegradation is not excluded. Moreover, increases of pollutant concentrations under shrubs following migration suggest that decreases would consequently occur at the source points. Some reflections on interpreting field work results are provided.


Geophysics ◽  
2000 ◽  
Vol 65 (2) ◽  
pp. 465-475 ◽  
Author(s):  
Yuji Mitsuhata

I present a method for calculating frequency‐domain electromagnetic responses caused by a dipole source over a 2-D structure. In modeling controlled‐source electromagnetic data, it is usual to separate the electromagnetic field into a primary (background) and a secondary (scattered) field to avoid a source singularity, and only the secondary field caused by anomalous bodies is computed numerically. However, this conventional scheme is not effective for complex structures lacking a simple background structure. The present modeling method uses a pseudo‐delta function to distribute the dipole source current, and does not need the separation of the primary and the secondary field. In addition, the method employs an isoparametric finite‐element technique to represent realistic topography. Numerical experiments are used to validate the code. Finally, a simulation of a source overprint effect and the response of topography for the long‐offset transient electromagnetic and the controlled‐source magnetotelluric measurements is presented.


Geophysics ◽  
1986 ◽  
Vol 51 (7) ◽  
pp. 1462-1471 ◽  
Author(s):  
Brian R. Spies ◽  
Dwight E. Eggers

Problems and misunderstandings arise with the concept of apparent resistivity when the analogy between an apparent resistivity computed from geophysical observations and the true resistivity structure of the subsurface is drawn too tightly. Several definitions of apparent resistivity are available for use in electromagnetic methods; however, those most commonly used do not always exhibit the best behavior. Many of the features of the apparent resistivity curve which have been interpreted as physically significant with one definition disappear when alternative definitions are used. It is misleading to compare the detection or resolution capabilities of different field systems or configurations solely on the basis of the apparent resistivity curve. For the in‐loop transient electromagnetic (TEM) method, apparent resistivity computed from the magnetic field response displays much better behavior than that computed from the induced voltage response. A comparison of “exact” and “asymptotic” formulas for the TEM method reveals that automated schemes for distinguishing early‐time and late‐time branches are at best tenuous, and those schemes are doomed to failure for a certain class of resistivity structures (e.g., the loop size is large compared to the layer thickness). For the magnetotelluric (MT) method, apparent resistivity curves defined from the real part of the impedance exhibit much better behavior than curves based on the conventional definition that uses the magnitude of the impedance. Results of using this new definition have characteristics similar to apparent resistivity obtained from time‐domain processing.


2001 ◽  
Vol 79 (9) ◽  
pp. 1121-1131 ◽  
Author(s):  
P Bracken

The gauge-transformation properties of the actions of certain scalar and Chern–Simons theories are investigated, including contributions from the boundary. By imposing chirality constraints on the fields, these types of theories can be used to describe the quantum Hall effect. It is shown that the corresponding equation of motion for the associated current for the theory generates an anomaly, which can be related directly to the Hall conductivity. PACS Nos.: 73.43, 03.70, 11.10, 11.30R


2021 ◽  
Vol 118 (33) ◽  
pp. e2023588118
Author(s):  
Kamil K. Kolincio ◽  
Max Hirschberger ◽  
Jan Masell ◽  
Shang Gao ◽  
Akiko Kikkawa ◽  
...  

The long-range order of noncoplanar magnetic textures with scalar spin chirality (SSC) can couple to conduction electrons to produce an additional (termed geometrical or topological) Hall effect. One such example is the Hall effect in the skyrmion lattice state with quantized SSC. An alternative route to attain a finite SSC is via the spin canting caused by thermal fluctuations in the vicinity of the ferromagnetic ordering transition. Here, we report that for a highly conducting ferromagnet with a two-dimensional array of spin trimers, the thermally generated SSC can give rise to a gigantic geometrical Hall conductivity even larger than the intrinsic anomalous Hall conductivity of the ground state. We also demonstrate that the SSC induced by thermal fluctuations leads to a strong response in the Nernst effect. A comparison of the sign and magnitude of fluctuation–Nernst and Hall responses in fundamental units indicates the need for a momentum–space picture to model these thermally induced signals.


Geophysics ◽  
2021 ◽  
pp. 1-43
Author(s):  
Qingtao Sun ◽  
Runren Zhang ◽  
Yunyun Hu

To facilitate the modeling of time-domain controlled-source electromagnetic survey, we propose an efficient finite-element method with weighted Laguerre polynomials, which shows a much lower computational complexity than conventional time integration methods. The proposed method allows sampling the field at arbitrary time steps and also its accuracy is determined by the number of polynomials, instead of the time sampling interval. Analysis is given regarding the optimization of the polynomial number to be used and the criterion of selecting the time scale factor. Two numerical examples in marine and land survey environments are included to demonstrate the superiority of the proposed method over the existing backward Euler time integration method. The proposed method is expected to facilitate the modeling of transient electromagnetic surveys in the geophysical regime.


2021 ◽  
Author(s):  
Henrik Schreiber ◽  
Saadou Oumarou Danni ◽  
Amine Touab ◽  
Fatima Abourig ◽  
Nelly Montcoudiol ◽  
...  

<p>The Chtouka plain in Morocco suffers from groundwater overexploitation and a significant increase in water salinity. In this study, a multidisciplinary approach combining water chemistry, stable isotopes of water (18O, 2H) and Transient Electromagnetic (TEM) method was used. The main objective was to identify the water salinity sources and the extension of the marine intrusion. Water samples were collected from wells and boreholes, springs, the Massa river and the main source of freshwater in the region, the Youssef Ibn Tachfine Dam. Geophysical (TEM) measurements (12 profiles comprising 83 measurement points) were carried out along the coastal zone and around the northern bank of the Massa river. The results show a spatial variability of water salinity, indicating rock-water interaction, seawater intrusion and anthropogenic influence. The interpretation of the TEM soundings allow to draw the front line of the marine intrusion in the aquifer. The results, compared to previous numerical simulations, show a significant progress of the marine intrusion into the coastal aquifer. The intrusion indeed reaches a distance of 2.5 km from the coast, far beyond models’ predictions. The local water authorities can use these results to improve their monitoring network and better assess the progress of the seawater intrusion.<br>Keywords: Water salinity, TEM geophysical method, chemical and isotopes tracers, marine intrusion</p>


Author(s):  
Naomi Oreskes

In 1901, Karl Zittel, president of the Bavarian Royal Academy of Sciences, declared that “Suess has secured almost general recognition for the contraction theory” of mountain-building. This was wishful thinking. Suess’s Das Antlitz der Erde was indeed an influential work, but by the time Suess finished the final volume (1904), the thermal contraction theory was under serious attack. Problems were evident from three different but equally important quarters. The most obvious problem for contraction theory arose from field studies of mountains themselves. As early as the 1840s, it had been recognized that the Swiss Alps contained large slabs of rock that appeared to have been transported laterally over enormous distances. These slabs consisted of nearly flat-lying rocks that might be construed as undisplaced, except that they lay on top of younger rocks. In the late nineteenth century, several prominent geologists, most notably Albert Heim (1849 –1937), undertook extensive field work in the Alps to attempt to resolve their structure. Heim’s detailed field work, beautiful maps, and elegant prose convinced geological colleagues that the Alpine strata had been displaced horizontally over enormous distances. In some cases, the rocks had been accordioned so tightly that layers that previously extended horizontally for hundreds of kilometers were now reduced to distances of a few kilometers. But in even more startling cases, the rocks were scarcely folded at all, as if huge slabs of rocks had been simply lifted up from one area of the crust and laid down in another. Heim interpreted the slabs of displaced rock in his own Glarus district as a huge double fold with missing lower limbs, but in 1884 the French geologist Marcel Bertrand (1847–1907) argued that these displacements were not folds but faults. Large segments of the Alps were the result of huge faults that had thrust strata from south to north, over and on top of younger rocks. August Rothpletz (1853–1918), an Austrian geologist, realized that the Alpine thrust faults were similar to those that had been earlier described by the Rogers brothers in the Appalachians. By the late 1880s, thrust faults had been mapped in detail in North America, Scotland, and Scandinavia.


Sign in / Sign up

Export Citation Format

Share Document