scholarly journals Thermodynamic Modeling of CO2 Separation Systems with Soluble, Redox-Active Capture Species

Author(s):  
Lauren E. Clarke ◽  
McLain E. Leonard ◽  
T. Alan Hatton ◽  
Fikile R. Brushett

Electrochemical approaches hold promise for energy-efficient and modular carbon dioxide (CO2) separation systems that can make direct use of renewably-generated electricity. Here we employ a thermodynamic modeling approach to estimate the upper performance bounds of CO2 separation processes that use soluble, redox-active capture species. We contemplate the impact of tunable molecular and electrolyte properties on the thermodynamic and faradaic efficiencies of four characteristic system configurations. We find a tradeoff between these efficiency metrics, and propose a new metric, the combined efficiency, that can be used to further explore this tradeoff and identify desirable property sets that balance energy and materials requirements. Subsequently, we determine effective CO2 binding affinities of redox-active capture molecules and demonstrate how these values are dependent upon molecular properties, system format, and operating conditions. Overall, this analytical framework can help guide molecular discovery and electrolyte engineering in this emerging field by providing insight into target material properties.

2021 ◽  
Vol MA2021-01 (26) ◽  
pp. 954-954
Author(s):  
Lauren E. Clarke ◽  
McLain E. Leonard ◽  
Fikile R. Brushett

2005 ◽  
Vol 33 (3) ◽  
pp. 156-178 ◽  
Author(s):  
T. J. LaClair ◽  
C. Zarak

Abstract Operating temperature is critical to the endurance life of a tire. Fundamental differences between operations of a tire on a flat surface, as experienced in normal highway use, and on a cylindrical test drum may result in a substantially higher tire temperature in the latter case. Nonetheless, cylindrical road wheels are widely used in the industry for tire endurance testing. This paper discusses the important effects of surface curvature on truck tire endurance testing and highlights the impact that curvature has on tire operating temperature. Temperature measurements made during testing on flat and curved surfaces under a range of load, pressure and speed conditions are presented. New tires and re-treaded tires of the same casing construction were evaluated to determine the effect that the tread rubber and pattern have on operating temperatures on the flat and curved test surfaces. The results of this study are used to suggest conditions on a road wheel that provide highway-equivalent operating conditions for truck tire endurance testing.


2019 ◽  
pp. 43-48
Author(s):  
Ben Nengjun ◽  
Zhou Pengfei ◽  
Oleksandr Labartkava ◽  
Mykhailo Samokhin

This work involves an analysis of high-chromium high-temperature deformable wieldable nickel alloys for use in GTE repair assemblies. It is shown that the alloys EP868 (VZh98) and Haynes 230 can be used in welded assemblies with an operating temperature of 800-1100 °C. The alloys Nimonic 81, Nimonic 91, IN 935, IN 939, and Nicrotan 2100 GT also have a high potential for use in welded assemblies. They are characterized by a combination of good weldability, high-temperature strength, and resistance to scaling. There have been conducted studies on high-temperature salt corrosion of model nickel alloys. They allowed establishing the patterns of the impact of base metal alloying with chromium, aluminum, titanium, cobalt, tungsten, molybdenum, niobium, tantalum and rare earth metals on the critical temperature of the start of salt corrosion Tcor and the alloy mass loss. It has been established that alloys with a moderate concentration (13-16%) of chromium can possess satisfactory hightemperature corrosion resistance (HTC resistance) under the operating conditions of ship GTE. The HTC resistance of CrAl-Ti alloys improves upon reaching the ratio Ti/Al ˃ 1. Meanwhile, the ratio Ti/Al ˂ 1 promotes the formation of corrosion products with low protective properties. The positive effect of tantalum on the HTC resistance of alloys is manifested at higher test temperatures than that of titanium, and the total content of molybdenum and tungsten in alloys is limited by the condition 8Mo2 – 2W2 = 89. The presence of refractory elements stabilizes the strengthening phase and prevents formation of the ɳ-phase. However, their excess promotes formation of the embrittling topologically close packed (TCP) phases and boundary carbides of an unfavorable morphology. Based on the studies of the HTC resistance, there has been identified a class of model high-temperature corrosionresistant nickel alloys with a moderate or high chromium content (30%), Ti/Al ˃ 1, and a balanced content of refractory and rare-earth elements.


2014 ◽  
pp. 298-301 ◽  
Author(s):  
Arnaud Petit

Bois-Rouge factory, an 8000 t/d cane Reunionese sugarcane mill, has fully equipped its filtration station with vacuum belt press filters since 2010, the first one being installed in 2009. The present study deals with this 3-year experience and discusses operating conditions, electricity consumption, performance and optimisation. The comparison with the more classical rotary drum vacuum filter station of Le Gol sugar mill highlights advantages of vacuum belt press filters: high filtration efficiency, low filter cake mass and sucrose content, low total solids content in filtrate and low power consumption. However, this technology needs a mud conditioning step and requires a large amount of water to improve mud quality, mixing of flocculant and washing of filter belts. The impact on the energy balance of the sugar mill is significant. At Bois-Rouge mill, studies are underway to reduce the water consumption by recycling low d.s. filtrate and by dry cleaning the filter belts.


Author(s):  
И.В. Бачериков ◽  
Б.М. Локштанов

При проектировании открытых и закрытых хранилищ измельченных сыпучих материалов древесных материалов, таких как щепа и опилки, большое значение имеет угол естественного откоса (статический и динамический) этих материалов. В технической литературе приводятся противоречивые сведения о величине этих углов, что приводит к ошибкам при проектировании складов. В справочных данных не учитываются условия, в которых эксплуатируются емкости для хранения сыпучих материалов, свойства и состояние этих сыпучих материалов. В свою очередь, ошибки при проектировании приводят к проблемам (зависание, сводообразование, «затопление» и т. д.) и авариям при эксплуатации бункеров и силосов на производстве. В статье представлены сведения, посвященные влиянию влажности и температуры на угол естественного откоса сыпучих материалов. На основании лабораторных и натурных экспериментов, проведенных с помощью специально разработанных методик и установок, была скорректирована формула для определения углов естественного откоса (статического и динамического) для измельченных древесных материалов в зависимости от их фракционного и породного состава, влажности (абсолютной и относительной) и температуры. При помощи скорректированной формулы можно определить угол естественного откоса древесных сыпучих материалов со среднегеометрическим размером частицы от 0,5 мм до 15 мм (от древесной пыли до технологической щепы) в различных производственных условиях. Статья может быть полезна проектировщикам при расчете угла наклона граней выпускающей воронки бункеров и силосов предприятий лесной отрасли и целлюлозо-бумажной промышленности. In the design of open and closed storage warehouses chopped wood materials for bulk materials such as wood chips and sawdust, great importance has an angle of repose (static and dynamic) of these materials. In the technical literature are conflicting reports about the magnitude of these angles, which leads to errors in the design of warehouses. In the referencesdoes not take into account the conditions under which operated capacities for storage of bulk materials, and properties and condition of the bulk material. The design errors lead to problems (hanging, arching, «flooding», etc.) and accidents in the operation of hoppers and silos at the mills. The article provides information on the impact of humidity and temperature on the angle of repose of granular materials. On the basis of laboratory and field experiments, conducted with the help of specially developed techniques and facilities has been adjusted formula for determining the angle of repose (static and dynamic) for the shredded wood materials depending on their fractional and species composition, humidity (absolute and relative) and temperature. It is possible, by using the corrected formula, to determine the angle of repose of loose wood materials with average particle size of from 0.5 mm to 15 mm (wood dust to pulpchips) in various operating conditions. The article can be helpful to designers in the calculation of the angle of inclination of the funnel faces produces bunkers and silos forest industries and pulp and paper industry.


2016 ◽  
Vol 6 (01) ◽  
pp. 5218
Author(s):  
Laxmi Mohandas ◽  
Anju T. R. ◽  
Sarita G. Bhat*

An assortment of redox-active phenazine compounds like pyocyanin with their characteristic blue-green colour are synthesized by Pseudomonas aeruginosa, Gram-negative opportunistic pathogens, which are also considered one of the most commercially valuable microorganisms. In this study, pyocyanin from Pseudomonas aeruginosa BTRY1 from food sample was assessed for its antibiofilm activity by micro titer plate assay against strong biofilm producers belonging to the genera Bacillus, Staphylococcus, Brevibacterium and Micrococcus. Pyocyanin inhibited biofilm activity in very minute concentrations. This was also confirmed by Scanning Electron Microscopy (SEM) and Confocal Laser Scanning Microscopy (CLSM). Both SEM and CLSM helped to visualize the biocontrol of biofilm formation by eight pathogens. The imaging and quantification by CLSM also established the impact of pyocyanin on biofilm-biocontrol mainly in the food industry.


Membranes ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 461
Author(s):  
Fu Yang ◽  
Zhengkun Huang ◽  
Jun Huang ◽  
Chongde Wu ◽  
Rongqing Zhou ◽  
...  

Ultrafiltration is a promising, environment-friendly alternative to the current physicochemical-based tannery wastewater treatment. In this work, ultrafiltration was employed to treat the tanning wastewater as an upstream process of the Zero Liquid Discharge (ZLD) system in the leather industry. The filtration efficiency and fouling behaviors were analyzed to assess the impact of membrane material and operating conditions (shear rate on the membrane surface and transmembrane pressure). The models of resistance-in-series, fouling propensity, and pore blocking were used to provide a comprehensive analysis of such a process. The results show that the process efficiency is strongly dependent on the operating conditions, while the membranes of either PES or PVDF showed similar filtration performance and fouling behavior. Reversible resistance was the main obstacle for such process. Cake formation was the main pore blocking mechanism during such process, which was independent on the operating conditions and membrane materials. The increase in shear rate significantly increased the steady-state permeation flux, thus, the filtration efficiency was improved, which resulted from both the reduction in reversible resistance and the slow-down of fouling layer accumulate rate. This is the first time that the fouling behaviors of tanning wastewater ultrafiltration were comprehensively evaluated, thus providing crucial guidance for further scientific investigation and industrial application.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 4034
Author(s):  
Paolo Iodice ◽  
Massimo Cardone

Among the alternative fuels existing for spark-ignition engines, ethanol is considered worldwide as an important renewable fuel when mixed with pure gasoline because of its favorable physicochemical properties. An in-depth and updated investigation on the issue of CO and HC engine out emissions related to use of ethanol/gasoline fuels in spark-ignition engines is therefore necessary. Starting from our experimental studies on engine out emissions of a last generation spark-ignition engine fueled with ethanol/gasoline fuels, the aim of this new investigation is to offer a complete literature review on the present state of ethanol combustion in last generation spark-ignition engines under real working conditions to clarify the possible change in CO and HC emissions. In the first section of this paper, a comparison between physicochemical properties of ethanol and gasoline is examined to assess the practicability of using ethanol as an alternative fuel for spark-ignition engines and to investigate the effect on engine out emissions and combustion efficiency. In the next section, this article focuses on the impact of ethanol/gasoline fuels on CO and HC formation. Many studies related to combustion characteristics and exhaust emissions in spark-ignition engines fueled with ethanol/gasoline fuels are thus discussed in detail. Most of these experimental investigations conclude that the addition of ethanol with gasoline fuel mixtures can really decrease the CO and HC exhaust emissions of last generation spark-ignition engines in several operating conditions.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 463
Author(s):  
Gopinathan R. Abhijith ◽  
Leonid Kadinski ◽  
Avi Ostfeld

The formation of bacterial regrowth and disinfection by-products is ubiquitous in chlorinated water distribution systems (WDSs) operated with organic loads. A generic, easy-to-use mechanistic model describing the fundamental processes governing the interrelationship between chlorine, total organic carbon (TOC), and bacteria to analyze the spatiotemporal water quality variations in WDSs was developed using EPANET-MSX. The representation of multispecies reactions was simplified to minimize the interdependent model parameters. The physicochemical/biological processes that cannot be experimentally determined were neglected. The effects of source water characteristics and water residence time on controlling bacterial regrowth and Trihalomethane (THM) formation in two well-tested systems under chlorinated and non-chlorinated conditions were analyzed by applying the model. The results established that a 100% increase in the free chlorine concentration and a 50% reduction in the TOC at the source effectuated a 5.87 log scale decrement in the bacteriological activity at the expense of a 60% increase in THM formation. The sensitivity study showed the impact of the operating conditions and the network characteristics in determining parameter sensitivities to model outputs. The maximum specific growth rate constant for bulk phase bacteria was found to be the most sensitive parameter to the predicted bacterial regrowth.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4136
Author(s):  
Clemens Gößnitzer ◽  
Shawn Givler

Cycle-to-cycle variations (CCV) in spark-ignited (SI) engines impose performance limitations and in the extreme limit can lead to very strong, potentially damaging cycles. Thus, CCV force sub-optimal engine operating conditions. A deeper understanding of CCV is key to enabling control strategies, improving engine design and reducing the negative impact of CCV on engine operation. This paper presents a new simulation strategy which allows investigation of the impact of individual physical quantities (e.g., flow field or turbulence quantities) on CCV separately. As a first step, multi-cycle unsteady Reynolds-averaged Navier–Stokes (uRANS) computational fluid dynamics (CFD) simulations of a spark-ignited natural gas engine are performed. For each cycle, simulation results just prior to each spark timing are taken. Next, simulation results from different cycles are combined: one quantity, e.g., the flow field, is extracted from a snapshot of one given cycle, and all other quantities are taken from a snapshot from a different cycle. Such a combination yields a new snapshot. With the combined snapshot, the simulation is continued until the end of combustion. The results obtained with combined snapshots show that the velocity field seems to have the highest impact on CCV. Turbulence intensity, quantified by the turbulent kinetic energy and turbulent kinetic energy dissipation rate, has a similar value for all snapshots. Thus, their impact on CCV is small compared to the flow field. This novel methodology is very flexible and allows investigation of the sources of CCV which have been difficult to investigate in the past.


Sign in / Sign up

Export Citation Format

Share Document