scholarly journals Implementasi Kendali Tegangan Lup Tertutup Buck Converter dengan Arduino Mega

2021 ◽  
Vol 8 (1) ◽  
pp. 11-15
Author(s):  
Masramdhani Saputra ◽  
Irham Fadlika ◽  
Saddani Djulihenanto

One type of power converter that is widely applied in the field of renewable energy is DC-DC Converter. In various application cases, voltage control features are often required. One of the challenges is how to build a closed loop controller to control the output voltage of the DC-DC Converter. In this journal, an Arduino Mega based output voltage controller will be implemented. The type of voltage controller implemented is the PI controller with the consideration that the controller has been well-known tested and mathematically proven. The PI controller is set based on closed loop block diagram calculations with the Buck Converter as the main plant. The implementation of the PI controller on the Arduino Mega is based on the expected transient response settings. PI controller was successfully implemented in this study. The experimental results show that, the controller can maintain its voltage along with changes, both source and load voltage. Thus, it can be concluded that the Arduino Mega board can work well in closed loop applications for power converter control

Author(s):  
Siripan Trakuldit ◽  
Chanin Bunlaksananusorn

Modern smart electronic and information technology (IT) devices require a low DC voltage for operation. The low supply voltage is typically provided by a dedicated DC−DC converter by stepping down the system’s bus voltage (e.g., 12 V). It is essential that the converter possesses a large voltage step-down gain and, at the same time, operates at high efficiency. A tapped inductor buck converter (TIBC) is a topology that has a potential to meet these requirements. It has a simple circuit structure and high efficiency similar to a buck converter, but can give a larger voltage step-down gain. This paper presents a dynamic modeling and closed-loop control of a TIBC. The state space averaging (SSA) method is adopted for the dynamic modeling to derive small-signal transfer functions of the converter. Based on the duty-cycle-to-output voltage transfer function, a closed-loop control is designed to keep the converter’s output voltage constant. To verify the design, a prototype TIBC with closed-loop control is implemented. Experimental results show that the prototype converter has good output voltage regulation and fast transient response when subject to a step load. The effect of the crossover frequency and phase margin on the converter’s transient response is also illustrated.


CYCLOTRON ◽  
2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Gita Arya Pratama ◽  
M. Krisna Ramadhani Ananta ◽  
Rio Winas Setia Budi ◽  
Belly Yan Dewantara ◽  
Iradiratu K

Abstrak— Paper ini menampilkan desain double boost converter yang mempunyai kemampuan menggandakan tegangan dua kali lipat berturut  turut beban DC yang menghasilkan tegangan output tambahan atau cadangan suplai pada beban. Pada umumnya double boost converter ini adalah konverter daya DC to Dc meningkatkan tegangan dari input (pasokan) ke output (beban) di desain menunjukkan bahwa dengan inputan sumber AC yang di searahkan terlebih dulu dengan converter penyearah berfungsi untuk mengatur kecepatan motor BLDC. Untuk pengontrolan pada beban motor menggunakan PI controller ( Proportional Integrator) dimana  parameter PI controller diperoleh dari trial eror. PI controller juga berfungsi memperbaiki gelombang keluaran dan kecepatan motor BLDC. Kata kunci : Motor BLDC, Double Boost Converter, PI controller. Abstract— This paper features a double boost converter design that has the ability to double the successive voltage in a DC load which results in an additional output voltage or supply reserve at load. In general, this double boost converter is a DC to Dc power converter increasing the voltage from input (supply) to output (load) in the design shows that the input AC source is aligned first with the rectifier converter to regulate the speed of the BLDC motor. To control the motor load using a PI controller (Proportional Integrator) where the PI controller parameter is obtained from the trial error. The PI controller also functions to improve the wave output and speed of the BLDC motor.


Author(s):  
Maheswari Ellappan ◽  
Kavitha Anbukumar

The renewable energy source plays a major role in the grid side power production. The stability analysis is very essential in the renewable energy converters. In this paper the bifurcation is analyzed in ZETA converter and Continuous input and output(CIO) power Buck Boost converter. The ZETA converter gives positive step down and step up output voltage and the CIO power converter gives the negative step up and step down output voltage. These converters are used in the DC micro grid with renewable energy as the source. The current mode control technique is applied to analyze the bifurcation behavior and the reference current is taken as the bifurcation parameter. When the reference current is varied, both the converters loses its stability and it enters into chaotic region through period doubling bifurcation. The simulation results are presented to study the performance behavior of both the converters. The stability region of both the converters are determined by deriving the Monodromy matrix approach.


Electronics ◽  
2021 ◽  
Vol 10 (19) ◽  
pp. 2333
Author(s):  
Xi Zhang ◽  
Tianshi Wang ◽  
Bocheng Bao

Fast load transient response and high light-load efficiency are two key features of the constant on-time (COT) control technique that has been widely used in numerous applications, such as for voltage regulators and point-of-load converters. However, when load step-down occurs during an on-time interval, the COT controller cannot respond until the COT interval expires. This delay causes an additional output voltage overshoot, resulting in unloading transient performance limitation. To eliminate the delay and improve the unloading transient response of the COT controller, a load step-down detection circuit is proposed based on capacitor current COT (CC-COT) control. In the detection circuit, the load step-down is monitored by comparing the measured capacitor current with the preset threshold voltage. Once the load step-down is monitored, the on-time is promptly truncated and the switch is turned off. With the proposed detection circuit, the CC-COT-controlled buck converter can monitor the load step-down without any delay and obtain less output voltage overshoot when the load step-down occurs during the on-time interval. PSIM circuit simulations are employed to demonstrate the feasibility of the detection circuit.


2012 ◽  
Vol 25 (1) ◽  
pp. 69-80 ◽  
Author(s):  
Darko Mitic ◽  
Dragan Antic ◽  
Marko Milojkovic ◽  
Sasa Nikolic ◽  
Stanisa Peric

The paper presents the design of discrete-time quasi-sliding mode voltage controller for DC-DC buck converter. The control algorithm is realized by measuring only sensed output voltage. No current measurements and time derivatives of output voltage are necessary. The proposed quasi-sliding mode controller provides stable output voltage, exhibiting robustness to parameter and load variations.


2012 ◽  
Vol 60 (4) ◽  
pp. 751-755 ◽  
Author(s):  
W. Janke ◽  
M. Bączek ◽  
M. Walczak

Abstract The output characteristics of switched-mode dc-dc buck power converter are discussed. The shape of output characteristics is especially important for converters used for supplying modern processors. An output impedance is usually used for description of output characteristics. Many efforts are described in the literature to obtain the satisfastory features of closed-loop output impedance. Another approach, presented in the paper, is based on the concept of the output voltage response corresponding to the load conductance change, and is expressed by hr transmittance. Simulations of output characteristics of the buck converter in frequency and in time-domain have been performed for the ideal case as well as for a more realistic situation, with the parasitic resistances of converter elements included. The measurement results differ substantially from characteristics calculated for an ideal converter and are in good consistency with simulations including parasitics.


Author(s):  
F.M. Serra ◽  
G.L. Magaldi ◽  
Walter Gil-Gonzalez ◽  
Oscar Montoya

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4127
Author(s):  
Matej Bereš ◽  
Dobroslav Kováč ◽  
Tibor Vince ◽  
Irena Kováčová ◽  
Ján Molnár ◽  
...  

The article describes the principles based on which it is possible to obtain energy from renewable sources more efficiently. The principles use the conventional DC-DC interleaved buck converter based on the common electronic component types and the control strategy. A novelty of such a proposed solution lies in the methods which are not new, but with the right combination, better results can be achieved. The resulting method can be implemented into various topologies where the highest efficiency for wide input power is required. In case of the renewable energy sources where the power can vary hugely during the day, the proposed method can be implemented. Therefore, the article provides several steps, from calculation through simulation to experimental results that brings reader close to understanding of a such proposed solution.


2020 ◽  
Vol 1 (2) ◽  
pp. 144-149
Author(s):  
Muldi Yuhendri ◽  
Randy Setiawan

Direct current (dc) voltage sources are one of the voltage sources most widely used for various purposes. Dc voltage can be obtained from a dc generator or by converting an ac voltage into a dc voltage using a power converter. There are several dc voltage levels that are commonly used by electrical and electronic equipment. To get a dc voltage that can be used for various equipment, then a dc voltage source must be varied according to the required. One way to get a variable dc voltage is to use a dc-dc converter. This research proposes a dc-dc boost converter that can increase the dc voltage with varying outputs. The boost converter is proposed using Arduino Uno as a controller with an input voltage of 12 volts. The converter output voltage regulation is implemented through Arduino programming using Matlab simulink. The experimental results show that the boost converter designed in this study has worked well as intended. This can be seen from the boost converter output voltage which is in accordance with the reference voltage entered in the Matlab simulink program


Sign in / Sign up

Export Citation Format

Share Document