scholarly journals Verapamil potentiates temozolomide anticancer efficacy through the intrinsic apoptotic pathway in brain cancer cells

Author(s):  
Hanif Farina ◽  
Perveen Kahkashan ◽  
Simjee Shabana
2013 ◽  
Vol 3 (3) ◽  
pp. 66 ◽  
Author(s):  
Vanessa Hörmann ◽  
Sivanesan Dhandayuthapani ◽  
James Kumi-Diaka ◽  
Appu Rathinavelu

Background: Prostate cancer is the second most common cancer in American men. The development of alternative preventative and/or treatment options utilizing a combination of phytochemicals and chemotherapeutic drugs could be an attractive alternative compared to conventional carcinoma treatments. Genistein isoflavone is the primary dietary phytochemical found in soy and has demonstrated anti-tumor activities in LNCaP prostate cancer cells. Topotecan Hydrochloride (Hycamtin) is an FDA-approved chemotherapy for secondary treatment of lung, ovarian and cervical cancers. The purpose of this study was to detail the potential activation of the intrinsic apoptotic pathway in LNCaP prostate cancer cells through genistein-topotecan combination treatments. Methods: LNCaP cells were cultured in complete RPMI medium in a monolayer (70-80% confluency) at 37ºC and 5% CO2. Treatment consisted of single and combination groups of genistein and topotecan for 24 hours. The treated cells were assayed for i) growth inhibition through trypan blue exclusion assay and microphotography, ii) classification of cellular death through acridine/ ethidium bromide fluorescent staining, and iii) activation of the intrinsic apoptotic pathway through Jc-1: mitochondrial membrane potential assay, cytochrome c release and Bcl-2 protein expression.Results: The overall data indicated that genistein-topotecan combination was significantly more efficacious in reducing the prostate carcinoma’s viability compared to the single treatment options. In all treatment groups, cell death occurred primarily through the activation of the intrinsic apoptotic pathway.Conclusion: The combination of topotecan and genistein has the potential to lead to treatment options with equal therapeutic efficiency as traditional chemo- and radiation therapies, but lower cell cytotoxicity and fewer side effects in patients. Key words: topotecan; genistein; intrinsic apoptotic cell death


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4417
Author(s):  
Rabin Neupane ◽  
Saloni Malla ◽  
Mariam Sami Abou-Dahech ◽  
Swapnaa Balaji ◽  
Shikha Kumari ◽  
...  

A novel series of 4-anilinoquinazoline analogues, DW (1–10), were evaluated for anticancer efficacy in human breast cancer (BT-20) and human colorectal cancer (CRC) cell lines (HCT116, HT29, and SW620). The compound, DW-8, had the highest anticancer efficacy and selectivity in the colorectal cancer cell lines, HCT116, HT29, and SW620, with IC50 values of 8.50 ± 2.53 µM, 5.80 ± 0.92 µM, and 6.15 ± 0.37 µM, respectively, compared to the non-cancerous colon cell line, CRL1459, with an IC50 of 14.05 ± 0.37 µM. The selectivity index of DW-8 was >2-fold in colon cancer cells incubated with vehicle. We further determined the mechanisms of cell death induced by DW-8 in SW620 CRC cancer cells. DW-8 (10 and 30 µM) induced apoptosis by (1) producing cell cycle arrest at the G2 phase; (2) activating the intrinsic apoptotic pathway, as indicated by the activation of caspase-9 and the executioner caspases-3 and 7; (3) nuclear fragmentation and (4) increasing the levels of reactive oxygen species (ROS). Overall, our results suggest that DW-8 may represent a suitable lead for developing novel compounds to treat CRC.


2022 ◽  
Author(s):  
Ahmed K. Abogosh ◽  
Meshal Alghanem ◽  
Saeed Ahmad ◽  
Abdullah Alasmari ◽  
Homood M. As Sobeai ◽  
...  

A new dinuclear cyclic gold(I) complex [Au2(DCyPA)2](PF6)2, 1 based on bis[2-(dicyclohexylphosphano)ethyl]amine (DCyPA) has been synthesized and characterized by elemental analysis, IR and NMR spectroscopies, and X-ray crystallography. In the dinuclear...


2016 ◽  
Vol 44 (04) ◽  
pp. 871-894 ◽  
Author(s):  
Ching-Fen Wu ◽  
Stefan Bohnert ◽  
Eckhard Thines ◽  
Thomas Efferth

Salvia miltiorrhiza Bunge (Lamiaceae) is a well-known Chinese herb that possesses numerous therapeutic activities, including anticancer effects. In this study, the cytotoxicity and the biological mechanisms of S. miltiorrhiza (SM) root extract on diverse resistant and sensitive cancer cell lines were investigated. CEM/ADR5000 cells were 1.68-fold resistant to CCRF-CEM cells, while HCT116 (p53[Formula: see text] and U87.MG[Formula: see text]EGFR cells were hypersensitive (collateral sensitive) compared to their parental cells. SM root extract stimulated ROS generation, cell cycle S phase arrest and apoptosis. The induction of the intrinsic apoptotic pathway was validated by increased cleavage of caspase 3, 7, 9 and poly ADP-ribose polymerase (PARP). MAP kinases including JNK, ERK1/2 and p38 were obviously phosphorylated and nuclear P65 was downregulated upon SM treatment. Transcriptome-wide COMPARE analysis revealed that the expression of encoding genes with diverse functions were associated with the cellular response to cryptotanshinone, one of the main constituents of SM root extract. In conclusion, SM root extract exerted profound cytotoxicity towards various sensitive and resistant cancer cells and induced the intrinsic apoptotic pathway.


Blood ◽  
2008 ◽  
Vol 111 (4) ◽  
pp. 2300-2309 ◽  
Author(s):  
Victoria Del Gaizo Moore ◽  
Krysta D. Schlis ◽  
Stephen E. Sallan ◽  
Scott A. Armstrong ◽  
Anthony Letai

Cancer cells acquire disruptions in normal signal transduction pathways and homeostatic mechanisms that would trigger apoptosis in normal cells. These abnormalities include genomic instability, oncogene activation, and growth factor independent proliferation. Therefore, cancer cells likely require a block in apoptosis in order to survive. Overexpression of the antiapoptotic protein BCL-2 provides a block in apoptosis that is frequently observed in cancer cells. We have developed methods for the detection and analysis of BCL-2 dependence and here apply them to acute lymphoblastic leukemia (ALL). BH3 profiling, a mitochondrial assay that classifies blocks in the intrinsic apoptotic pathway, indicated a dependence on BCL-2 of both ALL cell lines and primary samples. This dependence predicted that BCL-2 would be complexed with select pro-death BH3 family proteins, a prediction confirmed by the isolation of BCL-2 complexes with BIM. Furthermore, the BH3 profiling and protein analysis predicted that ALL cell lines and primary cells would be sensitive to ABT-737 as a single agent. Finally, BH3 profiling and protein studies accurately predicted a relative degree of sensitivity to BCL-2 antagonism in cell lines. The ALL cells studied exhibit BCL-2 dependence, supporting clinical trials of BCL-2 antagonists in ALL as single agents or combination therapies.


2021 ◽  
Vol 14 ◽  
Author(s):  
Jitendra Shrestha ◽  
Maftuna Shamshiddinova ◽  
Yong-Moon Lee ◽  
Yoon-Sin Oh ◽  
Dong Jae Baek ◽  
...  

Background and Objective: Colorectal cancer (CRC) is the fourth leading cause of cancer-related death globally, with a high incidence rate in economically fast-growing countries. Sphingosine-1-phosphate (S1P) is a bioactive lipid mediator that plays critical roles in cancer cell proliferation, migration, and angiogenesis converted by the isoforms of sphingosine kinase (SK1 and SK2). SK1 is highly expressed in colorectal cancer, its inhibitors suppress the formation of S1P and increase ceramide levels having a pro-apoptotic function. RB005 is a selective SK1 inhibitor and a structural analog of PP2A activator FTY720. The purpose of this study is to test whether RB005, an SK1 inhibitor, can be used as an anticancer agent by inhibiting the growth of colon cancer cells. Methods: We performed MTT and colony-forming assay using colon cancer cell lines HT29 and HCT116 cells to examine the cell toxicity effect of RB005. To determine whether apoptosis of RB005 in colon cancer cell line is due to SK1 inhibition or other mechanisms due to its structural similarity with FTY720, we conducted LC/MS, siRNA knockdown, and PP2A activity experiments. Results: RB005 notably inhibited CRC cell growth and proliferation compared to PF543 and ABC294640 by inducing the mitochondria-mediated intrinsic apoptotic pathway. Apoptotic cell death is caused by increased mitochondrial permeability necessitated by the activation of pro-apoptotic protein BAX, increased ceramides, and activation of PP2A. Also, RB005 treatment in HT29 cells did not change the expression level of SK1, but strikingly decreased SK1 activity and S1P levels. All these events of cell death and apoptosis were less effective when SK1 was knocked down by siRNA. Conclusion: This result indicates that RB005 shows the in-vitro anti-CRC effect by inhibiting SK1 activity and PP2A activation, increasing proapoptotic ceramide levels following the activation of the intrinsic apoptotic pathway.


Sign in / Sign up

Export Citation Format

Share Document