scholarly journals Recurrent Wheeze Exacerbations Following Acute Bronchiolitis—A Machine Learning Approach

2021 ◽  
Vol 2 ◽  
Author(s):  
Heidi Makrinioti ◽  
Paraskevi Maggina ◽  
John Lakoumentas ◽  
Paraskevi Xepapadaki ◽  
Stella Taka ◽  
...  

Introduction: Acute bronchiolitis is one of the most common respiratory infections in infancy. Although most infants with bronchiolitis do not get hospitalized, infants with hospitalized bronchiolitis are more likely to develop wheeze exacerbations during the first years of life. The objective of this prospective cohort study was to develop machine learning models to predict incidence and persistence of wheeze exacerbations following the first hospitalized episode of acute bronchiolitis.Methods: One hundred thirty-one otherwise healthy term infants hospitalized with the first episode of bronchiolitis at a tertiary pediatric hospital in Athens, Greece, and 73 age-matched controls were recruited. All patients/controls were followed up for 3 years with 6-monthly telephone reviews. Through principal component analysis (PCA), a cluster model was used to describe main outcomes. Associations between virus type and the clusters and between virus type and other clinical characteristics and demographic data were identified. Through random forest classification, a prediction model with smallest classification error was identified. Primary outcomes included the incidence and the number of caregiver-reported wheeze exacerbations.Results: PCA identified 2 clusters of the outcome measures (Cluster 1 and Cluster 2) that were significantly associated with the number of recurrent wheeze episodes over 3-years of follow-up (Chi-Squared, p < 0.001). Cluster 1 included infants who presented higher number of wheeze exacerbations over follow-up time. Rhinovirus (RV) detection was more common in Cluster 1 and was more strongly associated with clinical severity on admission (p < 0.01). A prediction model based on virus type and clinical severity could predict Cluster 1 with an overall error 0.1145 (sensitivity 75.56% and specificity 91.86%).Conclusion: A prediction model based on virus type and clinical severity of first hospitalized episode of bronchiolitis could predict sensitively the incidence and persistence of wheeze exacerbations during a 3-year follow-up. Virus type (RV) was the strongest predictor.

2021 ◽  
Author(s):  
Helver Novoa Mendoza ◽  
William Joseph Giraldo ◽  
Emilio Granell ◽  
Faber Danilo Giraldo

2020 ◽  
Vol 9 (8) ◽  
pp. 2403
Author(s):  
Hirokazu Fukui ◽  
Akifumi Nishida ◽  
Satoshi Matsuda ◽  
Fumitaka Kira ◽  
Satoshi Watanabe ◽  
...  

Irritable bowel syndrome (IBS) is diagnosed by subjective clinical symptoms. We aimed to establish an objective IBS prediction model based on gut microbiome analyses employing machine learning. We collected fecal samples and clinical data from 85 adult patients who met the Rome III criteria for IBS, as well as from 26 healthy controls. The fecal gut microbiome profiles were analyzed by 16S ribosomal RNA sequencing, and the determination of short-chain fatty acids was performed by gas chromatography–mass spectrometry. The IBS prediction model based on gut microbiome data after machine learning was validated for its consistency for clinical diagnosis. The fecal microbiome alpha-diversity indices were significantly smaller in the IBS group than in the healthy controls. The amount of propionic acid and the difference between butyric acid and valerate were significantly higher in the IBS group than in the healthy controls (p < 0.05). Using LASSO logistic regression, we extracted a featured group of bacteria to distinguish IBS patients from healthy controls. Using the data for these featured bacteria, we established a prediction model for identifying IBS patients by machine learning (sensitivity >80%; specificity >90%). Gut microbiome analysis using machine learning is useful for identifying patients with IBS.


2019 ◽  
Author(s):  
Wongeun Song ◽  
Se Young Jung ◽  
Hyunyoung Baek ◽  
Chang Won Choi ◽  
Young Hwa Jung ◽  
...  

BACKGROUND Neonatal sepsis is associated with most cases of mortalities and morbidities in the neonatal intensive care unit (NICU). Many studies have developed prediction models for the early diagnosis of bloodstream infections in newborns, but there are limitations to data collection and management because these models are based on high-resolution waveform data. OBJECTIVE The aim of this study was to examine the feasibility of a prediction model by using noninvasive vital sign data and machine learning technology. METHODS We used electronic medical record data in intensive care units published in the Medical Information Mart for Intensive Care III clinical database. The late-onset neonatal sepsis (LONS) prediction algorithm using our proposed forward feature selection technique was based on NICU inpatient data and was designed to detect clinical sepsis 48 hours before occurrence. The performance of this prediction model was evaluated using various feature selection algorithms and machine learning models. RESULTS The performance of the LONS prediction model was found to be comparable to that of the prediction models that use invasive data such as high-resolution vital sign data, blood gas estimations, blood cell counts, and pH levels. The area under the receiver operating characteristic curve of the 48-hour prediction model was 0.861 and that of the onset detection model was 0.868. The main features that could be vital candidate markers for clinical neonatal sepsis were blood pressure, oxygen saturation, and body temperature. Feature generation using kurtosis and skewness of the features showed the highest performance. CONCLUSIONS The findings of our study confirmed that the LONS prediction model based on machine learning can be developed using vital sign data that are regularly measured in clinical settings. Future studies should conduct external validation by using different types of data sets and actual clinical verification of the developed model.


Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1294
Author(s):  
Honglei Wang ◽  
Zhenlei Li ◽  
Dazhao Song ◽  
Xueqiu He ◽  
Aleksei Sobolev ◽  
...  

Rockburst is a serious hazard in underground engineering, and accurate prediction of rockburst risk is challenging. To construct an intelligent prediction model of rockburst risk with interpretability and high accuracy, three binary scorecards predicting different risk levels of rockburst were constructed using ChiMerge, evidence weight theory, and the logistic regression algorithm. An intelligent rockburst prediction model based on scorecard methodology (IRPSC) was obtained by integrating the three scorecards. The effects of hazard sample category weights on the missed alarm rate, false alarm rate, and accuracy of the IRPSC were analyzed. Results show that the accuracy, false alarm rate, and missed alarm rate of the IRPSC for rockburst prediction in riverside hydropower stations are 75%, 12.5%, and 12.5%, respectively. Setting higher hazard sample category weights can reduce the missed alarm rate of IRPSC, but it will lead to a higher false alarm rate. The IRPSC can adaptively adjust the threshold and weight value of the indicator and convert the abstract machine learning model into a tabular form, which overcomes the commonly black box problems of machine learning model, as well as is of great significance to the application of machine learning in rockburst risk prediction.


10.2196/20298 ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. e20298
Author(s):  
Mingyue Hu ◽  
Xinhui Shu ◽  
Gang Yu ◽  
Xinyin Wu ◽  
Maritta Välimäki ◽  
...  

Background Identifying cognitive impairment early enough could support timely intervention that may hinder or delay the trajectory of cognitive impairment, thus increasing the chances for successful cognitive aging. Objective We aimed to build a prediction model based on machine learning for cognitive impairment among Chinese community-dwelling elderly people with normal cognition. Methods A prospective cohort of 6718 older people from the Chinese Longitudinal Healthy Longevity Survey (CLHLS) register, followed between 2008 and 2011, was used to develop and validate the prediction model. Participants were included if they were aged 60 years or above, were community-dwelling elderly people, and had a cognitive Mini-Mental State Examination (MMSE) score ≥18. They were excluded if they were diagnosed with a severe disease (eg, cancer and dementia) or were living in institutions. Cognitive impairment was identified using the Chinese version of the MMSE. Several machine learning algorithms (random forest, XGBoost, naïve Bayes, and logistic regression) were used to assess the 3-year risk of developing cognitive impairment. Optimal cutoffs and adjusted parameters were explored in validation data, and the model was further evaluated in test data. A nomogram was established to vividly present the prediction model. Results The mean age of the participants was 80.4 years (SD 10.3 years), and 50.85% (3416/6718) were female. During a 3-year follow-up, 991 (14.8%) participants were identified with cognitive impairment. Among 45 features, the following four features were finally selected to develop the model: age, instrumental activities of daily living, marital status, and baseline cognitive function. The concordance index of the model constructed by logistic regression was 0.814 (95% CI 0.781-0.846). Older people with normal cognitive functioning having a nomogram score of less than 170 were considered to have a low 3-year risk of cognitive impairment, and those with a score of 170 or greater were considered to have a high 3-year risk of cognitive impairment. Conclusions This simple and feasible cognitive impairment prediction model could identify community-dwelling elderly people at the greatest 3-year risk for cognitive impairment, which could help community nurses in the early identification of dementia.


Sign in / Sign up

Export Citation Format

Share Document